Iterative Methods

The following summarizes the main points of our class discussion of the classical iterative methods for solving $Ax = b$ and also provides additional useful results.

Conventions: The system dimensions are $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$, $b \in \mathbb{R}^n$. The ijth entry in A is denoted by a_{ij}. The ith components of x and b are denoted by x_i and b_i. A sum is omitted when its lower index of summation is greater than its upper index of summation.

The classical methods.

These methods are based on a “splitting” $A = D - L - U$, in which D is a diagonal matrix containing the diagonal of A, and $-L$ and $-U$ are strict lower- and upper-triangular matrices containing the strict lower- and upper-triangular parts of A. The “matrix” forms of the methods are as follows:

<table>
<thead>
<tr>
<th>JACOBI ITERATION:</th>
<th>GAUSS–SEIDEL ITERATION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given an initial x,</td>
<td>Given an initial x,</td>
</tr>
<tr>
<td>Iterate:</td>
<td>Iterate:</td>
</tr>
<tr>
<td>$x \leftarrow D^{-1}[(L+U)x + b]$</td>
<td>$x \leftarrow (D - L)^{-1}(Ux + b)$</td>
</tr>
</tbody>
</table>

Successive Over-Relaxation (SOR):

Given an initial x,

Iterate:

$$x \leftarrow (D - \omega L)^{-1} \{(1 - \omega)D + \omega U\}x + \omega b$$

The equivalent “componentwise” forms of the methods are as follows

<table>
<thead>
<tr>
<th>JACOBI ITERATION:</th>
<th>GAUSS–SEIDEL ITERATION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given an initial x,</td>
<td>Given an initial x,</td>
</tr>
<tr>
<td>Iterate: For $i = 1, \ldots, n$</td>
<td>Iterate: For $i = 1, \ldots, n$</td>
</tr>
<tr>
<td>$x_i^+ = \left(b_i - \sum_{j \neq i} a_{ij}x_j \right) / a_{ii}$</td>
<td>$x_i \leftarrow \left(b_i - \sum_{j < i} a_{ij}x_j - \sum_{j > i} a_{ij}x_j \right) / a_{ii}$</td>
</tr>
<tr>
<td>Update $x \leftarrow x^+$.</td>
<td></td>
</tr>
</tbody>
</table>
Successive Over-Relaxation (SOR):
Given an initial x,
Iterate:
For $i = 1, \ldots, n$
$$x_i \leftarrow (1 - \omega)x_i + \left(\omega/a_{ii}\right)\left(b_i - \sum_{j<i}a_{ij}x_j - \sum_{j>i}a_{ij}x_j\right)$$

Convergence theory.
Consider the following General Iteration, in which $T \in \mathbb{R}^{n \times n}$ and $c \in \mathbb{R}^n$:

General Iteration:
Given an initial x,
Iterate:
$$x \leftarrow Tx + c$$

The classical iterative methods are of this form, as follows:
- Jacobi iteration: $T = T_J \equiv D - 1_{L + U}$ and $c = c_J \equiv D - 1b$.
- Gauss–Seidel iteration: $T = T_{GS} \equiv (D - L)^{-1}U$ and $c = c_{GS} \equiv (D - L)^{-1}b$.
- SOR: $T = T_\omega \equiv (D - \omega L)^{-1}[(1 - \omega)D + \omega U]$ and $c = c_\omega \equiv \omega(D - \omega L)^{-1}b$.

Note that for all three methods, $x^* = Tx^* + c$ if and only if $x^* = A^{-1}b$. Thus, if the iterates produced by one of these methods converge, then they converge to $A^{-1}b$.

Proposition 1 and Theorem 3 below are results for the General Iteration.

Proposition 1: If $\{x^{(k)}\}$ produced by the General Iteration converges to some x^*, then $x^* = Tx^* + c$.

Definition 2: The spectrum and the spectral radius of T are, respectively,
$$\sigma(T) \equiv \{\lambda : Tx = \lambda x, \text{ for some } x \neq 0\} \quad \text{and} \quad \rho(T) \equiv \max_{\lambda \in \sigma(T)} |\lambda|.$$

Theorem 3: The iterates $\{x^{(k)}\}$ produced by the General Iteration converge for every $x^{(0)}$ if and only if $\rho(T) < 1$. If $\rho(T) < 1$, then for every $x^{(0)}$, $\{x^{(k)}\}$ converges to the unique x^* satisfying $x^* = Tx^* + c$.

The results below pertain to convergence of the classical iterations and are often useful in applications.

Definition 4: A is diagonally dominant if $|a_{ii}| \geq \sum_{j \neq i} |a_{ij}|$ for $1 \leq i \leq n$. A is strictly diagonally dominant if $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ for $1 \leq i \leq n$.

Theorem 5: If A is strictly diagonally dominant, then A is nonsingular. Moreover, $\rho(T_3) < 1$ and $\rho(T_{GS}) < 1$; consequently, both the Jacobi and Gauss–Seidel iterates converge to $A^{-1}b$ for every $x^{(0)}$.

Theorem 6 (Stein–Rosenberg): If $a_{ij} \leq 0$ for $i \neq j$ and if $a_{ii} > 0$ for each i, then one and only one of the following holds:

(a) $0 \leq \rho(T_{GS}) < \rho(T_J) < 1$,
(b) $1 < \rho(T_J) < \rho(T_{GS})$,
(c) $\rho(T_J) = \rho(T_{GS}) = 0$,
(d) $\rho(T_J) = \rho(T_{GS}) = 1$.

Note that if (a) holds, then both the Jacobi and Gauss–Seidel iterates converge to $A^{-1}b$ for every $x^{(0)}$, and we can expect the Gauss–Seidel iterates to converge faster. If (c) holds, then the iterates from both methods reach $A^{-1}b$ in a finite number of iterations. If (b) or (d) holds, then the iterates do not converge for some $x^{(0)}$.

Theorem 7: If A is symmetric positive-definite (SPD), then the Gauss–Seidel iterates converge to $A^{-1}b$ for every $x^{(0)}$.

Note that, since an SPD matrix has positive diagonal elements, it follows from Theorem 7 and the Stein–Rosenberg theorem that if A is SPD with non-positive off-diagonal elements, then the Jacobi iterates as well as the Gauss–Seidel iterates converge to $A^{-1}b$ for every $x^{(0)}$, and we can expect the Gauss–Seidel iterates to converge faster.

Theorem 8 (Kahan): If $a_{ii} \neq 0$ for $i = 1, \ldots, n$, then the SOR iteration matrix T_ω satisfies $\rho(T_\omega) \geq |\omega - 1|$. Consequently, the SOR iterates converge for every $x^{(0)}$ only if $0 < \omega < 2$.

Theorem 9 (Ostrowski–Reich): If A is symmetric positive-definite and $0 < \omega < 2$, then the SOR iterates converge to $A^{-1}b$ for every $x^{(0)}$.

Theorem 10: If A is symmetric positive-definite and tridiagonal, then $\rho(T_{GS}) = \rho(T_J)^2 < 1$, and the ω that minimizes $\rho(T_\omega)$ is

$$\omega = \frac{2}{1 + \sqrt{1 - \rho(T_J)^2}}.$$

For this ω, $\rho(T_\omega) = \omega - 1$.

The results above came from reference [1, Sec. 7.3], although Theorem 5 has been augmented a bit and Theorem 7 is not stated there, presumably because it is implied by Theorem 9 with $\omega = 1$. There are many more convergence results for the classical iterations. A good general reference is [2]. Seminal classical references are [3] and [4].

References.