ABSTRACT

Microwave-assisted chemical reactions have become very popular in preparative chemistry due to many advantages such as accelerated reaction rate, higher chemical yield and lower energy use. In dedicated equipment, however, the microwave units operate as “black boxes” keeping the role of the thermal effects in microwave-assisted chemical processes somewhat obscure. To address this issue, in this paper, we propose a simple mathematical model for computing microwave-induced temperature in a three-media cylindrical structure representing a core element of a typical microwave reactor with the reactant assumed to be stirred by convection flows. The model determines the average temperature of the reactant for the known absorbed microwave power and heating time. To illustrate its functionality, the model is used to compute time-temperature characteristics of water, ethanol, and methanol heated in the batch reactor MiniFlow 200SS. The curve calculated for water appears to be in an excellent agreement with an experiment. This confirms the hypothesis on temperature homogenization in liquid reactants in batch reactors due to convection and suggests that modeling can be helpful in clarifying and quantifying the details of microwave-assisted chemical processes.

KEYWORDS: Absorbed power, batch reactor, convection, liquid reactants, microwave-assisted chemistry, modeling, temperature.

INTRODUCTION

Microwave-assisted chemistry is a rapidly growing discipline utilizing microwaves as the means of enhancing and accelerating chemical reactions. Microwave heating is the phenomenon behind such advantages as accelerated reaction rate, higher chemical yield, lower energy use, selective heating and some other benefits observed in comparison with conventional heating methods [Lidstrom et al., 2001; Kappe and Stadler, 2009; Leadbeater, 2010; Surati et al., 2012]. Currently, there exists a range of dedicated equipment for use in preparative chemistry [Leadbeater, 2010; Moseley et al., 2008]; however, the development of new reaction routes remains difficult because of lack of data on the interaction between the reactants and corresponding microwave units [Murphy and Yakovlev, 2010a; Murphy and Yakovlev, 2010b; Holmes et al., 2013].

Modeling of the underlying electromagnetic (EM) and thermal (T) processes has already found a well-defined niche in other technologies employing microwave energy (such as food and...
Computer simulation is now known to be a useful and instructive tool determining the key characteristics and assisting in design of microwave applicators [Kopyt and Celuch, 2009; Koutchma and Yakovlev, 2010; Allan et al., 2012; Subbiah et al, 2012]. Applications of modeling in microwave-assisted chemistry have not gained yet an appropriate popularity, but include modeling-based techniques for designing/scaling up energy efficient microwave reactors for a single [Murphy and Yakovlev, 2010a] and multiple reactants [Murphy and Yakovlev, 2010b]. There are therefore indications that sufficiently adequate modeling could help clarify and quantify the thermal effects in microwave-assisted chemical processes.

In our previous work [Holmes et al., 2013], we developed an advanced model capable of simulating EM and T phenomena in the MiniFlow 200SS reactor, a commercially available apparatus for microwave-assisted chemistry designed and produced by SAIREM SAS, Neyron, France. Experimental verification of computational results, however, has revealed that, while the model is overall quite adequate, in liquid reactants, the actual temperature fields are more uniform than they appear in the model’s output. This has been explained by the presence of convection flows acting as an effective mechanism of averaging the reactant’s temperature [Holmes et al., 2013]. Understanding the impact made by convection on temperature characteristics of the microwave-induced reactions in low viscosity reactants therefore becomes a point of significant interest.

In this paper, we present a simple model allowing for determining the average temperature of a liquid reactant exposed to microwave heating and well stirred due to the convection effect (or by manual/mechanical stirring). We consider a three-media problem consisting of the reactant (a liquid or low viscosity substance), the material of a vessel, and the medium of a container holding the vessel. The three media form a cylindrical structure which is presumed to be inside a closed metal cavity (a waveguide or a resonator) and heated by microwaves. This scenario is natural for preparative microwave-assisted chemistry and can be found in microwave units of some dedicated commercial equipment (e.g., in MiniFlow 200SS).

The model is based on a number of physical assumptions which are expected to be held in practice when using microwave energy with liquid reactants. Input data of the model include media parameters and a time characteristic of the absorbed microwave power. In this paper, we use the model to compute time evolution of the average temperature of water in a Pyrex vial placed inside a Teflon cup; geometrical parameters are taken as in the MiniFlow 200SS system. Modeling results are found to be in an excellent agreement with temperature values measured by a fiber optic sensor. The validated model is finally used for estimation of temperature evolution of two other substances (ethanol and methanol) heated in the same reactor.

MATHEMATICAL MODEL

The heat transfer problem is formulated for the concentric scenario (shown in Figure 1) under the following assumptions suggested by physics of the considered heating process:

- Absorbed power per volume is uniform due to strong convection flows.
- Compared to Medium 1 (the reactant) and Medium 3 (e.g., Teflon), Medium 2 (e.g., Pyrex or glass) is a material of lower specific heat and smaller mass. So, heat absorbed by Medium 2 is negligible.
- With typical dielectric properties of Media 2 and 3, they do not absorb microwave power.

This suggests that Medium 1 may be assumed to be the only material in this scenario that is heated by microwaves, whereas Media 2 and 3 are heated...
conventionally, considering that the heat from Medium 1 and the heat absorbed by Medium 2 may be negligible.

As an element of a microwave reactor, the concentric structure in Figure 1 is confined inside of a metal cavity and surrounded by air. We therefore consider all outer surfaces of this structure (side walls, top, and bottom) to be thermally insulated.

A typical general model of the microwave heating process is based on solving an EM-T coupled problem (i.e., Maxwell’s equations coupled with the heat transfer equation, assuming appropriate boundary and initial conditions) and requires the use of advanced numerical techniques and substantial computational resources [Kopyt and Celuch, 2009; Koutchma and Yakovlev, 2010; Subbiah et al., 2012]. In the EM part of the problem, the absorbed microwave power per unit volume is proportional to the squared magnitude of the electric field, which can vary significantly from point to point. However, here we consider substances with strong convection flows that, as seen in the related experiments with a batch reactor [Holmes et al., 2013], stir the reactants and homogenize temperature distributions. We thus deduce that the same effect could be produced, in the absence of convection, by a uniform electric field. Assuming perfect convection, we therefore assume the power absorbed by the volume of Medium 1 to be uniform.

Relating the EM problem to the T one, we consider two heat transfer equations in polar coordinates with the origin in the center of the structure:

Medium 1: \[\frac{\partial u_1}{\partial t} = \alpha_1 \nabla^2 u_1 + q, \]
Medium 3: \[\frac{\partial u_3}{\partial t} = \alpha_3 \nabla^2 u_3, \]

where \(u_{1,3} = u_{1,3}(r,t) \) denote temperatures and \(\alpha_{1,3} \) are thermal diffusivities of Medium 1 and 3, respectively, and \(q = P_a/c_1 m_1 \) is the heat source term due to microwave absorption, where \(m_1 \) and \(c_1 \) are the mass and specific heat of Medium 1, and \(P_a \) is microwave power absorbed by Medium 1.

Aiming to determine the average temperature of the reactant, in the following derivation we reduce the problem to a 1-D scenario in which temperature changes only in the \(r \)-direction. By expanding in (1) the Laplacian in polar coordinates, we obtain the governing equations:

Medium 1: \[\frac{\partial u_1}{\partial t} = \alpha_1 \left[\frac{1}{r} \frac{\partial u_1}{\partial r} + \frac{\partial^2 u_1}{\partial r^2} \right] + q, \]
Medium 3: \[\frac{\partial u_3}{\partial t} = \alpha_3 \left[\frac{1}{r} \frac{\partial u_3}{\partial r} + \frac{\partial^2 u_3}{\partial r^2} \right]. \]

The thermal insulation on the outer surface of Medium 3 is given by the boundary condition:

\[\frac{\partial u_3(R_3,t)}{\partial r} = 0. \]

Also, because of symmetry of the system around \(r = 0 \), we assume a zero temperature gradient at the center of Medium 1, i.e.:

\[\frac{\partial u_1(0,t)}{\partial r} = 0. \]

To introduce average temperatures of Media 1 and 3, we integrate both sides of (2) over the portion of the domain occupied by Medium 1; this yields:
\[A_1 \frac{\partial \bar{u}_1}{\partial t} = \alpha_1 \left\{ \int_0^{R_1} \left[\frac{1}{r} \frac{\partial u_1}{\partial r} + \frac{\partial^2 u_1}{\partial r^2} \right] r \, dr \int_0^{2\pi} d\theta \right\} + A_1 q \]

where \(\bar{u}_1 \) is the average temperature of Medium 1 and \(A_1 = 2\pi R_1^2 \). Applying the boundary condition (5), we obtain:

\[\frac{\partial \bar{u}_1}{\partial t} = 2\pi \alpha_1 R_1 \frac{\partial \bar{u}_1}{\partial r} (R_1, t) + A_1 q \quad (7) \]

and therefore the gradient of the average temperature is

\[\frac{\partial \bar{u}_1}{\partial t} = D_1 \frac{\partial u_1}{\partial r} (R_1, t) + q , \quad (8) \]

where

\[D_1 = \frac{2\alpha_1}{R_1}. \quad (9) \]

Similarly, we integrate both sides of (3) over the domain and, assuming the boundary condition (4) is satisfied, obtain:

\[A_3 \frac{\partial \bar{u}_3}{\partial t} = \alpha_3 \left\{ \int_{R_2}^{R_3} \left[\frac{1}{r} \frac{\partial u_3}{\partial r} + \frac{\partial^2 u_3}{\partial r^2} \right] r \, dr \int_0^{2\pi} d\theta \right\} = 2\pi \alpha_3 \left[R_3 \frac{\partial u_3}{\partial r} (R_3, t) - R_2 \frac{\partial u_3}{\partial r} (R_2, t) \right] \quad (10) \]

where \(A_3 = \pi (R_3^2 - R_2^2) \) is the area of the domain, and \(\bar{u}_3 \) is the average temperature of Medium 3. We also reduce (10) to

\[\frac{\partial \bar{u}_3}{\partial t} = -D_3 \frac{\partial \bar{u}_3}{\partial r} (R_2, t), \quad (11) \]

where

\[D_3 = \frac{2\alpha_3 R_2}{2(R_3 - R_2)R_2 + (R_3 - R_2)^2}. \quad (12) \]

By Fourier’s law of conduction, the heat flux (as shown in Figure 2) exiting Medium 1 is:

\[q_1 = k_1 \frac{\partial \bar{u}_1}{\partial r} (R_1, t), \quad (13) \]

where \(k_1 \) is thermal conductivity of Medium 1. Similarly, the heat flux entering Medium 3 is:

\[q_3 = k_3 \frac{\partial \bar{u}_3}{\partial r} (R_2, t), \quad (14) \]

where \(k_3 \) is thermal conductivity of Medium 3. The heat flux through Medium 2 could be calculated similarly, but since the thickness of Medium 2 is small, the gradient through it is instead taken to be the difference of temperatures across Medium 2 divided by its thickness (as illustrated in Figure 2). The heat flux through Medium 2 is thus expressed as

\[q_2 = \frac{k_2 [\bar{u}_1 (R_1, t) - \bar{u}_3 (R_2, t)]}{R_2 - R_1}, \quad (15) \]

where \(k_2 \) is the thermal conductivity of Medium 2. Because of energy conservation, the heat flux is conserved, i.e.:

\[q_1 = q_2 = q_3 . \quad (16) \]

Combining (13) through (16), we find the temperature gradients at \(R_1 \) and \(R_2 \) in relation to the average temperatures in Media 1 and 3 to be:

\[\frac{\partial \bar{u}_1}{\partial r} (R_1, t) = \frac{\bar{u}_3 - \bar{u}_1}{R_2 - R_1} k_2 , \quad (17) \]

\[\frac{\partial \bar{u}_3}{\partial r} (R_2, t) = \frac{\bar{u}_3 - \bar{u}_1}{R_2 - R_1} k_3. \quad (18) \]

Substituting (8) and (11) into (17) and (18), we obtain the following system of ordinary differential equations, which can be solved for \(\bar{u}_1 \) and \(\bar{u}_3 \):

\[\frac{\partial \bar{u}_1}{\partial t} = -\frac{D_1 k_2}{(R_2 - R_1) k_1} \bar{u}_1 \]

\[+ \frac{D_1 k_2}{(R_2 - R_1) k_1} \bar{u}_3 + \frac{P_a}{c_1 m_1} \quad (19) \]

\[\frac{\partial \bar{u}_3}{\partial t} = \frac{D_3 k_2}{(R_2 - R_1) k_3} \bar{u}_1 - \frac{D_3 k_2}{(R_2 - R_1) k_3} \bar{u}_3. \quad (20) \]
To summarize, the input data needed to solve (19) and (20) are: microwave power absorbed by Medium 1, material parameter of Media 1 and 3 (density, mass, specific heat, and thermal conductivity), and radii of all three cylinders. In the absence of data on thermal diffusivities for (9) and (12), the values of $D_{1,3}$ can be determined through the densities of the respective media as $\alpha_{i,j} = k_{i,j}/(\rho_{i,j} c_{i,j})$.

COMPUTATIONAL RESULTS AND EXPERIMENTAL VALIDATION

A computer code solving the system (19)-(20) has been implemented as a MATLAB script using the function `ode45`. Geometrical and material parameters were taken to replicate the batch reactor of the *MiniFlow 200SS* system (Figure 3); these parameters are presented in Tables I and II.

Similar to [Holmes et al., 2013], experimental validation of the model was made with 15.7 g of water in a cylindrical, 30 mm high Pyrex vial (Figure 4). A series of six experiments, each heating this sample up to 80 °C by 100 W of incident microwave power at 2.45 GHz was performed. The values of power and frequency were strictly maintained by the control system of a solid state generator in the *MiniFlow 200SS* system. A fiber optic sensor held inside a glass capillary was used to measure temperature at six different points along the central axis of the vial. The absorbed power P_a, an input parameter of the model (19)-(20), was calculated from the reflected power recorded for each heating experiment every 3 seconds; the averaged time characteristic of the reflected power is shown in Figure 5.

Table I. Geometrical Parameters and Masses of the MiniFlow 200SS Reactor.

<table>
<thead>
<tr>
<th></th>
<th>R_1 (mm)</th>
<th>R_2 (mm)</th>
<th>R_3 (mm)</th>
<th>Mass of Pyrex walls (g)</th>
<th>Mass of Teflon walls (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>12</td>
<td>14.3</td>
<td></td>
<td>2</td>
<td>26.3</td>
</tr>
</tbody>
</table>

Table II. Thermal Media Parameters Used in Simulation.

<table>
<thead>
<tr>
<th>Medium</th>
<th>Density (g/m3)</th>
<th>Specific heat (J/(gK))</th>
<th>Thermal conductivity (W/(mK))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium 1: water</td>
<td>1.00×10^6 [1]</td>
<td>4.2 [1]</td>
<td>0.6 [1]</td>
</tr>
<tr>
<td>Medium 2: Pyrex</td>
<td>-</td>
<td>0.75 [2]</td>
<td>1.0 [1]</td>
</tr>
</tbody>
</table>

Figure 3. Batch reactor of the *MiniFlow 200SS* system - general view (a) and internal design (upper lid of the reactor removed) (b).
Figure 6 shows the average temperature of Medium 1 (water) obtained from the simulations and measurements. Computational and experimental results are in excellent agreement. This confirms our hypothesis that, in a batch reactor, the convection flows make a significant impact on the microwave-induced temperature fields in liquid reactants. Our model is therefore directly applicable to any other low viscosity substances (whose mass, density, specific heat, and thermal conductivity are known) heated in other microwave systems featuring a similar cylindrical concentric element as in Figure 1.

Figure 7 shows the results of application of the model to two other common chemical substances (ethanol and methanol, whose thermal properties are also collected in Table II) in comparison with water. The dimensions of the scenario are again taken as in MiniFlow 200SS (Table I).
DISCUSSION

When solving the heat transfer problem (2)-(5), we employ the approach of integrating heat equation over its domain rather than analytically solving for temperature distribution, because of our interest in the average temperatures rather than the temperature fields themselves.

In integrating heat equation over its domain, we simplify our calculation by noticing that, while our problem is essentially 1-dimensional in space, we choose to consider a problem that is 2-dimensional and integrate over the area of the domains rather than its radius; this allows us to avoid dealing with the integral \(\int (1/r) \partial u / \partial r \, dr \) which cannot be evaluated in terms of elementary antiderivatives. By raising the problem to 2D, we introduce the area element \(dA = r \, dr \, d\theta \).

When integrating, we simplify the integral over the domain into easily representable functions.

The model can also apply to liquid reactants apart from water. In Figure 7, we present the upper and lower bounds of the time-temperature characteristics corresponding to zero- and 10% loss of microwave power. These curves were calculated for the particular levels \(P_a = 100 \) and 90 W of absorbed (rather than incident) microwave power. As such, Figure 7 shows the difference in heating of the considered substances due to their thermal properties rather than their loss factors (which are higher and lower, respectively, for ethanol and methanol compared to that of water [Lidstrom et al., 2001]), and this calculation is based on the prescribed level of \(P_a \). However, if experimental data on the absorbed power (similar to the one in Figure 5) is available prior to calculation with (19)-(20), the model may be capable of generating a precise time-temperature characteristic of the process (similar to the curve in Figure 6).

This consideration suggests that knowledge of reflected (and thus absorbed) power of the microwave assisted chemical reaction may make the proposed simple model an efficient and accurate computational tool determining average temperature of substances with strong convection. If corresponding equipment and the reactants are not accessible for experimentation, the required characteristics could be produced with the use of an appropriate full-wave 3D model developed, for examples, for some general-purpose EM modeling software (like QuickWave-3D [QuickWave-3D] used for modeling of MiniFlow 200SS in [Holmes et al., 2013]).

CONCLUSION

In this paper, the coupled EM-T problem of microwave heating of liquid substances with convection has been considered in a three-media concentric cylindrical structure. In general, modeling convection flows in microwave-assisted chemistry is a problem that is both mathematically complicated and computationally expensive. To simplify the analysis, we have suggested using the average temperature to characterize a homogenization effect produced by convection flows, and excluding the coupled problem from consideration.

On the basis of a series of physics-based assumptions, the problem has been decoupled and the thermal portion reduced.
to a linear system of ordinary differential equations; time characteristics of the average temperature of the stirred liquid reactant have been computed from this system. If the microwave power absorbed by the reactant in the course of heating is known (from prior measurement or modeling), the proposed model, as confirmed by experiments with SAIREM’s MiniFlow 200SS batch reactor, can predict evolution of average temperature with a high level of accuracy.

The model is computationally very inexpensive and takes a very few seconds of CPU time. For comparison, a QuickWave-3D simulation of the coupled EM-T problem representing a one-minute microwave heating process in the batch reactor of MiniFlow 200SS system (without taking into account convection) takes about 3 hours of operation of an advanced GPU workstation.

ACKNOWLEDGEMENTS

This work was partially supported by an appointment to the Faculty Research Participation Program at the U.S. Air Force Research Laboratory administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy and U.S. AFRL. Partial support of the Office of the WPI Dean of Arts and Sciences is also acknowledged.

The authors are grateful to SAIREM SAS for providing their MiniFlow 200SS system for modeling and experimentation and to Huixin He and Alex Zozulya for discussions of motivations of this study and its results.

REFERENCES

Murphy E. K., and Yakovlev V. V. (2010a) “CAD technique for microwave chemistry reactors with energy efficiency optimized for different reactants“. ACES Journal 25, pp. 1108-1117.

QuickWave-3D™, QWED Sp. z o. o., http://www.qwed.eu

