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ABSTRACT.  The paper outlines different versions of a novel method for determining the 
dielectric properties of arbitrarily shaped materials.  Complex permittivity is found using a 
neural network procedure to control a 3D FDTD model computation of S-parameters and to 
process their measurements.  Network architectures are based on multilayer perceptron and 
radial basis function nets.  The method is cavity-independent and handles frequency-
dependent media parameters.  High accuracy of permittivity reconstruction is demonstrated by 
numerical and experimental testing.  
 
INTRODUCTION  

Recently, microwave power engineers have taken a particular interest in complex 
permittivity, ε = ε′ – iε″.  While modern electromagnetic simulators allow the engineers to 
extensively characterize a constructed device prior to making a physical prototype, in order to 
perform a trustworthy simulation, it is necessary to have reliable knowledge of the dielectric 
properties of the materials being modeled.  

Determination of dielectric constant ε′ and loss factor ε″ of practical materials is a difficult 
problem.  Perturbation and transmission/reflection techniques and other known methods may 
give satisfactory results under conditions which are either difficult to follow, or simply not 
acceptable; samples typically require the laborious preparation to comply with strict 
dimensional tolerance requirements.   

With further progress in numerical methods, it has become feasible to develop techniques 
in which the more difficult tasks are assigned to a simulator while the experimental part is 
reduced to an elementary measurement.  This approach has been taken in the methods using 
FEM [1-3] and FDTD [4] modeling of the entire experimental fixtures.  To further explore 
this trend, the present paper outlines the principal aspects of a novel efficient technology for 
permittivity reconstruction.  

In our previous work [5], we have proposed an approach involving an experimental setup 
(a closed cavity with an embedded measured sample), whose S-parameters are computed by 
the FDTD method and measured by a network analyzer.  Dielectric constant and loss factor 
are determined in the course of processing of simulated and measured data by an optimization 
procedure based on artificial neural networks (ANN).   

In the present contribution, we generalize the capabilities of this method by considering 
other network architectures built on the multilayer perceptron (MLP) and the radial basis 
function (RBF) ANN, checking different options in network training, and expanding the class 
of suitable materials to the ones with frequency-dependent media parameters.  Since the 
underlying modeling technique easily handles arbitrary sample/fixture geometry and ANN 
technology   is   capable  of  generalizing  the  processed  data  and  adjusting  to  the  physical  
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(a)                                                                           (b) 

 

Fig. 1.  One- (a) and two-port closed systems (b) with dielectric samples of arbitrary configuration.  
 
characteristics of the cavity, our method is proposed as a flexible and efficient technique of 
permittivity reconstruction well suited to practical applications.  
 
METHOD OF PERMITTIVITY RECONSTRUCTION 
Network Architectures 

We consider two basic one-hidden-layer architectures associated with two types of the 
experimental setups – a one-port structure intended for measurement of the reflection 
coefficient S11 and a two-port system which also handles the transmission coefficient S21.  The 
configurations of the closed systems considered in our analysis are shown in Fig. 1 while the 
corresponding networks are presented in Figs. 2 and 3.   

For network training and testing, we use information generated in the modeling phase of 
the method powered by the 3D FDTD method.  In the first approach, the network input 
receives the simulated values of |S11| at n points of the interval around the frequency of 
interest f0 while the network output is associated with ε′ and ε″.  In the second architecture, 
the input layers get (and the output layers generate) either the simulated values of Re(S11), 
Im(S11), Re(S21), Im(S21), or the values of ε′ and ε″ for which S-parameters are computed at 
the modeling stage.  When the network is well trained, it is supplied with the measured values 
of S-parameters and determines ε′ and ε″ of the sample in question.  
 
One-Port Solution 

In  order  to describe the computation of complex permittivity with the presented networks, 
we  introduce  the vectors  [ ] [ ]Tn

T
n fSfSSS )(...)(... 111111 ==S    and   [ ] [ ]TT εε ′′′== 21 εεε . 

Then the one-port networks generate the following output:  
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where σ(·) = tanh(·) is the activation function used for the hidden neurons, and 3|2
pqw  represents 

the network weights of the links between the qth neuron in the 1st or 2nd layer and the pth 
neuron in the 2nd or 3rd layer; the activation function for the output neurons is a linear 
function.  In the 2×n-input network, N = NA and N = NB for Net A and Net B respectively.  

The  training  data  are pairs of ),( kk ΕS , k = 1, …, P, where Εk is the desired outputs of the 
network  with  input kS  (i.e., the values of dielectric constant and the loss factor for which kS  
have been simulated), and P is the number of training vectors.  The aim is to adjust the vector 
of network weights w in order to reduce the errors defined as  
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(a)                                                                               (b) 
 

Fig. 2.  MLP networks for the one-port system: n- (a) and 2×n-input architectures (b). 
 

       
 

(a)                                                                               (b) 
 

Fig. 3.  MLP and RBF networks for the two-port structure: 4- (a) and 2-input architectures (b). 
 
where  ),(ε wSkl   is  the ANN output for input kS .  The errors depend on the way the network 
is trained as well as on its configuration, i.e., on the number of hidden neurons.  To minimize 
the errors (and improve the quality of learning), we determine this number by a standard trial-
and-error process applied to the same training data set.   

Two training algorithms, namely, backpropagation technique and the second-order 
gradient-based technique are implemented with the use of the gradient method (iterations 
from 1 to 200) and the Levenberg-Marquardt method (iterations beyond 200) respectively. 

Since the one-port approach deals with the at frequencies different from f0, we have a 
fundamental restriction on the accuracy of this version of the method applied to the materials 
with frequency-dependent media parameters.  FDTD computation of a frequency response is 
performed for ε′ and ε″ at f0, and measurement of the reflection coefficient is conducted 
everywhere in (f1, fn); hence the measured values may correspond only at f0.  This provides 
motivation for considering alternative network architectures processing the related 
information only at f0, and dealing with more parameters representing the system behavior, 
i.e., with the complex reflection coefficient (S11) and transmission coefficient (S21).  
 
Two-Port Solution 

With introduction  of  the  vector  [ ] [ ]TT
SS )Im(...)Re(S...S 211141 ==S ,  the  output  of the 

two-port MLP and RBF networks is represented by the formulas 
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associated  with  the  4-  and  2-input  networks; the hidden neuron activation functions are the 
hyperbolic tangent and Gaussian function 

2

)( γγσ −= e  for MLP and RBF  ANN  respectively. 
A linear activation function is used for the output layer in the networks of both types.  

The training data for the 4-input MLP and RBF architectures are pairs of ),( kk ΕS , and  the 
training error is defined as  
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where  ),(ε wSkl   is  the  ANN  output for input kS .  In the 2-input networks, the training data 
are pairs of ),( kk Σε , where Σk is the desired outputs of the network for inputs kε  (i.e., the 
values of S-parameters simulated for given kε ).  Computation of error in this case is preceded 
by minimization of the function   
 

2
),ε( kklkG Σ−= wS , k = 1, …, P, l = 1, …, 4,                                                                       (6) 

 

where ),ε( wS kl  is the ANN output for input kε .  The solution to this minimization problem is 
a set of approximated complex permittivity values.  Therefore, the network error is 
determined from:  
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For the training, the backpropagation technique and the second-order gradient-based 

technique are used in the two-port networks just as in the one-port ones.  
 
NUMERICAL TESTING 
One-Port Structure 

All the above ANN algorithms have been implemented in a MATLAB 6 environment.  For 
modeling, we use the full-wave 3D conformal FDTD simulator QuickWave-3D (QW-3D) [6].  
Data required for network training is collected by a special procedure that repeatedly runs 
QW-3D to compute S-parameters for various values of ε′ and ε″ of the sample.  

The one-port scheme has been tested numerically for a section of 72 × 34 mm waveguide 
with a rectangular (20 × 20 × 30 mm) dielectric block in the corner near the shorting wall.  
The FDTD model representing this scenario was built with a non-uniform mesh with 7.5 and 
3 mm cubic cells in air and in a dielectric sample respectively (8,463 cells total).  

The networks were trained using vectors of |S11| frequency responses with n = 3, f1 = 2.4 
GHz, f2 = f0 = 2.45 GHz, f3 = 2.5 GHz, and with 27 values of complex permittivity from the 
intervals 5 < ε′ < 9 and 0.2 < ε″ < 1.0.  The graphs in Fig. 4 show the typical sum-squared 
error produced by the n- and 2×n-input networks for different number of neurons in the 2nd 
layer.  It is seen that for more than 10 hidden neurons, the networks are characterized by 
errors not larger than 10-5.  
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Table 1.  Dielectric samples used in numerical testing of the networks for the two-port scheme  
 

 Sample     x-, y-, z-dimensions (mm)          position     distance (mm) from…                        .  
     A    50 × 50 × 20                A       …the 2nd port: 120,  …central line:  0 
     B    42 × 30 × 50                B       …the 2nd port: 120,  …central line:  30 
     C    20 × 25 × 62                C       …the 2nd port: 120,  …central line:  60 
     D    20 × 25 × 20                D       …the 2nd port: 150,  …central line:  30 
 

When tested with the training sets of 51 vectors, the networks demonstrated sufficiently 
accurate permittivity reconstruction.  The desired and actual responses from the 2×n-input 
MLP are presented in Fig. 5: mean square error (MSE) is of order 10-3.  
 
Two-Port Structure 

The two-port scheme dealing with the S-parameters at f0 has been numerically tested with 
vectors of Re(S11), Im(S11), Re(S21), and Im(S21) at f0 = 915 MHz for the 497 mm section of a 
248 × 124 mm waveguide containing a rectangular dielectric sample (Table 1).   

We built the training sets for the values of relative complex permittivity in the ranges 54 < 
ε′ < 74 and 6 < ε″ < 30.  The 4- and 2-input MLP and the 4-input RBF ANNs were trained 
with the sets obtained for 48 equally spaced points in the complex (ε′, ε″)-plane and additional 
points on the border (68 samples total).  For the 2-input RBF, where the number of vectors in 
the training set is equal to the number of hidden neurons, the decision as to how many vectors 
(i.e., points from the (ε′, ε″)-plane) in the database to use was made dynamically.  The 
network was given a small database and the error was computed.  The three test points with 
the greatest error were chosen, and for each point an average was taken between the supposed 
and the ANN-generated values.  This average was then taken for the computation of the next 
sample for the database.  For example, for Sample B in Position B, the optimal number of 
training vectors (and hidden neurons) turned out to be 57 (Fig. 6).  In the 4- and 2-input MLP, 
N was taken 13 and 14 respectively.  

Although all MLP/RBF 4-/2-input networks have demonstrated good performance, some of 
them were found to be more accurate.  In Fig. 7, the desired and actual responses are shown 
for the 2-input RBF network with a corresponding mean square error 0.013 while for the 4- 
and 2-input MLP ANNs, MSE’s are 0.029 and 0.073 respectively.  

Training sets for the ranges of 36 < ε′ < 56 and 4 < ε″ < 26 have also been created.  The 
MLP and RBF networks were trained as described above.  The 2-input nets have again shown 
somewhat lower errors.  In Fig. 8, typical examples of the desired and actual responses from 
the MLP networks are presented: in both cases the MSE values are of order 10-3.  

The detailed error analysis has been carried out to evaluate the accuracy of the two-port 
systems with a ±2 mm divergence in the sample’s geometry in each dimension.  Numerical 
experimentation has been performed for ε = 57 – i8 (apple, 88 % moisture contents), ε = 68 – 
i14 (cantaloupe, 92 %), ε = 62 – i22 (potato, 79 %), and ε = 55 – i16 (sweet potato, 80 %) [7].  
A typical example of this computation is shown in Fig. 9.   

Generalizing the results of the analysis conducted for these materials as Samples A to D at 
Positions A to D, we conclude that the 2-input networks can give an error in ε″ less than 5 % 
if the sample’s geometrical deviation in the longitudinal and transverse directions does not 
exceed 0.5-1.0 mm.  A 10 % error results from a 1.2-1.5 mm deviation.  For ε′, the error is 
less than 5 % when the deviation is less than 1.2-1.5 mm and always less than 10 % in the 
considered 2 mm deviation.  At the same time, a notable variation of accuracy is observed 
when the sample’s height changes – even if variation in the vertical dimension is very small.  
So, for accuracy, this experimental setup should be constructed to minimize accidental 
deviations of the sample size in the z-direction.  

 
EXPERIMENTAL TESTING 

To show the method in full operation, we have designed the experimental setup 
implementing  the  concept  of  the  one-port  solution  and  thus  measuring reflections from a 
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                           (a)                                                  (b)                                                   (c)  
 

Fig. 4.  Training and testing error of n-input MLP (a) and Net A (b) and Net B (c) of 2×n-input MLP.   
 

 
 

Fig. 5.  Complex permittivity reconstructed with the 2×n-input MLP with NA = NB = 10:  
circles and crossed circles mark the test data and the actual responses respectively. 

 
cavity with a dielectric sample (Fig. 10).  Using a rectangular (70 × 70 × 50 mm) Teflon block 
with a cylindrical cutout (radius 25 mm, height 40 mm) suitable for holding liquids, we have 
determined complex permittivity of tap and saline water.  The container filled with water was 
placed on the center line of the waveguide section at 40 mm from the waveguide’s shorting 
wall in the opposite end with respect to the coaxial-waveguide transition.  

We used a QW-3D model consisting of 71,442 cells with a non-uniform mesh (cell sizes in 
air, Teflon and water are 15, 5, and 2 mm respectively) for the entire cavity and dielectric 
inclusions.  The permittivity of Teflon was taken as 2.06 – i0.  The database of the training 
and testing sets was created with n = 3, f1 = 0.91 GHz, f2 = f0 = 0.915 GHz, and f3 = 0.92 GHz 
for 60 < ε′ < 90 and 1 < ε″ < 20 and included 108 and 224 vectors respectively.  For the 2×n-
input network, the optimal structure was found as having NA = 15 and NB = 19.  The 
normalized sum of squared differences between the desired and actual network responses at 
the training stage was less than 10-4 for both Net A and Net B.  

The values of |S11| measured at f1 = 0.91 GHz, f2 = 0.915 GHz, and f3 = 0.92 GHz for the 
Teflon container filled with water were given to the trained network, and it generated water’s 
dielectric constant and the loss factor.  For the sample of known temperature and salinity, ε′ 
and ε″ have been also determined from the model whose average error is 0.3% for ε′ and 1.8% 
for ε″ [8].  As one can see from Table 2, the results are in very close agreement.  This 
confirms the capability of the proposed ANN-based method for accurate reconstructing of 
complex permittivity of materials.  
 
CONCLUSION  

Our novel technology of permittivity reconstruction which employs FDTD modeling, an 
ANN-based optimization technique, and elementary measurement of S-parameters places 
minimal physical requirements on fixture and sample  geometry  and  is  sufficiently  accurate 
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               Fig. 6.  MSE of the 2-input RBF with             Fig. 7.  Complex permittivity of Sample B in 
             the number of training samples from 48         Position B: reconstructed with the 2-input RBF 
                                  to 69 with step 3.                      with N = 57; the test data and the actual responses. 

 

        
 

(a)                                                                      (b) 
 

Fig. 8.  Complex permittivity of Sample C in Position B: reconstructed by the 4-input MLP with 
N = 13 (a) and the 2-input MLP with N = 14; the test data and the actual responses. 

 

         
 

(a)                                                                      (b) 
 

Fig. 9.  Percent error in getting right ε′ (a) and ε″ (b) as a function of deviation of training data 
for the sample dimension in the x-direction: potato as Sample B in Position B.  

 
for practical use.  Further developments of the method may include its adjustment to non-
homogeneous dielectrics and a refinement to allow sample preparation to less strict 
dimensional tolerances.  

The practical advantages of the method are obvious.  It does not depend on the associated 
closed  system  and  thus  can  be  used  with  any  available  cavity  and  any  suitable   FDTD  
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(a)                                                                        (b) 
 

Fig. 10.  Diagram (a) and photo (b) of the experimental setup for the one-port solution.  
 

Table 2.  Complex permittivity of fresh water with salinity 0.033 ‰ at temperature 18.6oC 
     determined by the one-port method and the 2×n-input MLP ANN          . 

                                       ε′                                 |                            ε″                             . 
Method    Model [8]    Accuracy, %  |   Method    Model [8]    Accuracy, %  

                   80.6           80.5               0.12         |       4.25           4.30                1.2 
 
simulator, not necessarily QW-3D.  While a relatively large computational effort may be 
required for creation of a database for network training and testing, the process of training 
requires nearly negligible time.  Whenever we work at a fixed frequency with materials that 
can take some pre-defined form, the database is created only once.  One can do that prior to 
actual experimental testing, and each new material can be processed thereafter practically in 
real time – provided that ε′ and ε″ of this material are within the ranges specified in the 
database and that the computer model is based upon the measured experimental fixture.  
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