
8: Bits to Symbols to Signals

BITS TO SYMOLS TO SIGNALS
AND BACK AGAIN

⋆ Bits to Symbols

⋆ Symbols to Signals

⋆ Correlation

⋆ Signals to Symbols

⋆ Symbols to Bits

idealized system

Software Receiver Design Johnson/Sethares/Klein 1 / 19

8: Bits to Symbols to Signals

Bits to Symbols to Signals and Back Again

Transmitted�
signal

w!{"3, "1, 1, 3}

Coding

Pulse�
shaping

Analog�
upconversion

Channel

Noise
Other FDM�

users

P(f)

Analog�
conversion�

to IF

Digital down-�
conversion�

to baseband

EqualizerDownsampling Decision Decoding

Ts�
Input to the�

software �
receiver

Timing�
synchronization

T

Analog�
received�

signal

Reconstructed�
message

Source and�
error coding�

frame synchronization

Q(m)!{"3, "1, 1, 3}

Carrier�
synchronization

Antenna

Carrier�
specification

Binary�
message�

sequence b

m b
^

Pulse�
matched�

filter

#

! Our interest here is in the coding and pulse-shaping of the transmitter
and the corresponding decoding and pulse-matched filtering with
downsampling of the receiver.

! The processing we call upon is correlation.

Software Receiver Design Johnson/Sethares/Klein 2 / 19

8: Bits to Symbols to Signals

Bits to Symbols

! Text to bits: ASCII, 8 bits per character, e.g. T is 01010100 (from
dec2base(’T’,2,8))

! Further encoding: The bit stream can be further manipulated, e.g. to
provide extra resilience to broadband channel noise, into a different
bit stream to be converted to symbols to signals. Its reversal must be
incorporated in the decoder for the receiver conversion from bits to
text.

! Bit pairs to multilevel symbols: For 4-PAM alphabet of {±1,±3}
11 → +3
10 → +1
01 → −1
00 → −3

e.g. T is {−1,−1− 1− 3} (from letters2pam(’T’))

Software Receiver Design Johnson/Sethares/Klein 3 / 19

8: Bits to Symbols to Signals

Symbols to Signals

! The symbol sequence scales successive pulses in a periodic pulse train
to form the analog signal to be transmitted.

! “Good” pulses
! offer no interference to their neighboring pulses (at least at the

sampling instants)
! make efficient use of spectrum
! are resilient to noise
! admit a low complexity time-domain implementation

! Realistic pulses compromise among these features.

Software Receiver Design Johnson/Sethares/Klein 4 / 19

8: Bits to Symbols to Signals

Symbols to Signals (cont’d)

! Inter-symbol interference can be removed by using a pulse
time-limited to less than the symbol transmission period.

! However, a time-limited pulse has a magnitude spectrum that is
unlimited in frequency.

! To conserve bandwidth, we would like to pick a pulse shape resulting
in rapidly decaying tails in the magnitude spectrum of the associated
message signal.

Software Receiver Design Johnson/Sethares/Klein 5 / 19

8: Bits to Symbols to Signals

Text to Signals Example

! Text: “Transmit this text”
! Coding: 8-bit ASCII to 4-PAM
! Rectangular pulse message and spectrum (from pulseshape)

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

seconds

am
pl
itu
de

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

100

200

300

400

500

600

700

frequency

m
ag
ni
tu
de

Software Receiver Design Johnson/Sethares/Klein 6 / 19

8: Bits to Symbols to Signals

Text ... Example (cont’d)

! 10-sample even-symmetric, Hamming blip:
{0.08, 0.19, 0.46, 0.77, 0.97, 0.97, 0.77, ..., 0.08}

! Hamming blip message and spectrum

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

seconds

am
pl
itu
de

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

50

100

150

200

250

300

350

frequency

m
ag
ni
tu
de

! So, which is better? T -wide Hamming blip spectrum has lower power
bandwidth (but higher null-to-null) bandwidth than the spectrum of a
T -wide rectangular pulse.

Software Receiver Design Johnson/Sethares/Klein 7 / 19

8: Bits to Symbols to Signals

Correlation

! Similarity test for pulse baud/sample time and frame location can
exploit correlation function peakiness.

! Crosscorrelation

Rwv(j) = lim
T→∞

1

T

T/2∑

k=−T/2

w[k]v[k + j]

! Called autocorrelation when w = v and labelled Rw[j].
! With finite length data records, Matlab xcorr removes limit and

1/T scale factor and sums over nonzero values of w and v.
! Crosscorrelation is not the same as convolution of w and v which is

y[j] = w[j] ∗ v[j] =
∞∑

k=−∞

w[k]v[j − k]

Software Receiver Design Johnson/Sethares/Klein 8 / 19

8: Bits to Symbols to Signals

Correlation (cont’d)

If either w or v is even symmetric then crosscorrelation (without the limit
and the 1/T normalizer) and convolution are the same.

! To show this, assume w[i] = w[−i]

! Then
∞∑

k=−∞

w[k]v[j − k] =
∞∑

k=−∞

w[−k]v[j − k]

! Redefine dummy variable −k as k̄ and

∞∑

k=−∞

w[k]v[j − k] =
−∞∑

k̄=∞

w[k̄]v[j + k̄]

= Rwv[j]

! So, given w even-symmetry, correlation can be thought of as a linear
filter (and vice versa).

Software Receiver Design Johnson/Sethares/Klein 9 / 19

8: Bits to Symbols to Signals

Correlation (cont’d)

Crosscorrelation can also be used to identify the delay in a scaled, delayed,
noisy measurement of a known signal.

! Assume r[k] = gw[k −∆] + v[k] and Rwv[j] = 0 for all j.

! Crosscorrelation of w and r

Rwr[j] = lim
T→∞

1

T

T/2∑

k=−T/2

gw[k]w[k −∆+ j]

+ lim
T→∞

1

T

T/2∑

k=−T/2

w[k]v[k + j]

= gRw[j −∆]

i.e. a time-shifted autocorrelation.

! If Rw is deliberately single-peaked then ∆ is readily ascertained from
Rwr.

Software Receiver Design Johnson/Sethares/Klein 10 / 19

8: Bits to Symbols to Signals

Correlation (cont’d)

Example:

! Signal: binary data for 30 symbols, a 10 symbol binary marker, and
25 more data symbols

! Top ∼ marker; Middle ∼ signal; Bottom ∼ signal and marker
crosscorrelation (from correx)

1 2 3 4 5 6 7 8 9 10
"1

"0.5

0

0.5

1

Header

"2

"1

0

1

2

0 20 40 60 80 100 120 140
"10

"5

0

5

10 Correlation of header with data

Data with embedded header

0 10 20 30 40 50 60 70

Software Receiver Design Johnson/Sethares/Klein 11 / 19

8: Bits to Symbols to Signals

Correlation (cont’d)

! With two vectors w and v xcorr(w,v) zero pads the shorter of its
two arguments with trailing zeros before computing the result∑

k w[k]v[k + j] for each j.

! xcorr(w,v) starts by setting the last entry of the second vector over
the first of the first vector, multiplies adjacent pairs, and sums the
products, slides top vector to right by one position, and repeats.

! Because w is 55 entries shorter than v, a string of 55 zeros appears as
the tail of the output of xcorr.

! Header is self-aligned at the 35th sample time, as reflected in largest
peak in correlation output.

Software Receiver Design Johnson/Sethares/Klein 12 / 19

8: Bits to Symbols to Signals

Signals to Symbols

! At the receiver, could use a LPF with bandwidth similar to that of
pulse shape to suppress out-of-band interferers.

! Could use a pulse-matched correlator to enhance peakiness of pulses
for timing assistance.

! For an even symmetric pulse, correlation and convolution are the
same operation.

! Correlation with symmetric pulse shape often called “receive filter”.

Software Receiver Design Johnson/Sethares/Klein 13 / 19

8: Bits to Symbols to Signals

Text to Signals to Symbols to Text Example

! Received signal generation: Recall previous text to transmitted
4-PAM example with Hamming blip pulse (T = 1, Ts = 0.1) using
pulseshape.

! Receive filter: Use Hamming blip pulse shape as in recfilt.

! Baud timing: First maximum in receive filter output magnitude (at
index N*M) corresponds to first symbol.

Software Receiver Design Johnson/Sethares/Klein 14 / 19

8: Bits to Symbols to Signals

Text ... Example (cont’d)

Using plotspec(y(N*M:end),.1), the receive filter output and spectrum
can be plotted.

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15

seconds

am
pl
itu
de

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

500

1000

1500

2000

frequency

m
ag
ni
tu
de

Software Receiver Design Johnson/Sethares/Klein 15 / 19

8: Bits to Symbols to Signals

Text ... Example (cont’d)

! Normalization for quantizer: When first local maximum in magnitude
is normalized by inner product of 10-element pulse vector of 3.583 a
−1 is recovered, as expected as first symbol of “T” quadruple.

! Downsampling: Subsequent sampling of the receive filter output every
symbol period after the first local magnitude maximum recovers the
transmitted symbol sequence without error.

! Decoding: Simply reverse ASCII code with quadruples located relative
to first magnitude peak. This frame synchronization is typically not
so easy as here where we locked on to the first peak as the first
symbol of the first quadruple of the message to be decoded following
a zero preceding (or marker) signal.

Software Receiver Design Johnson/Sethares/Klein 16 / 19

8: Bits to Symbols to Signals

Symbols to Bits

! Frame synchronization: Successful decoding requires properly
grouping the quadruples of symbols to be transformed into a text
character.

! Inserted marker: Special subsequence inserted at the front of a
sequence of quadruples (to be found by correlation) and subsequent
quadruples are framed from this reference point.

! Correlation:
Sum products of adjacent values

m1 m2 m3 m4 m5 m6 m7

1 "1 1 1 "1 "1 "1 1 m1 m2 m3 m4 m5 m6 m7 1 "1 1

Shift marker to right and repeat

m1 m2 m3 m4 m5 m6 m7

1 "1 1 1 "1 "1 "1 1 m1 m2 m3 m4 m5 m6 m7 1 "1 1

Software Receiver Design Johnson/Sethares/Klein 17 / 19

8: Bits to Symbols to Signals

Symbols to Bits (cont’d)

! Marker autocorrelation peakiness: Some markers are peakier than
others:

! transmitted sequence example:
..., +1, −1, +1, +1, −1, −1, −1, +1, marker, +1, −1, +1, ...

! Marker A: 1, 1, 1, 1, 1, 1, 1
! Marker B: 1, 1, 1, −1, −1, 1, −1
! Crosscorrelation with marker starting at 7th transmitted sequence entry

shown
⊙ for marker A: −1, −1, 1, 1, 1, 3, 6, 7, 7, 7, 5, 5.
⊙ for marker B: 1, 1, 3, −1, −5, −1, −1, 1, 7, −1, 1, −3

! Marker B is a “pseudonoise” (PN) sequence so named for its
single-peaky autocorrelation typically associated with a white “noise”
signal.

Software Receiver Design Johnson/Sethares/Klein 18 / 19

8: Bits to Symbols to Signals

Scrambling

! Each block of message data M (in binary 0/1 form) need not be
spectrally flat, though the transmission system may be designed under
that assumption.

! To encourage spectral flatness of the transmitted signal, a
pre-arranged scrambling sequence S can be added modulo-2,
bit-by-bit to the message string M and the sum transmitted.

! After demodulation to a symbol sequence and bit string recovery, the
receiver locates the start of the binary message block (e.g. using
correlation to a marker) and adds S again bit-by-bit with modulo-2
arithmetic where 1 + 1 = 0 and 0 + 0 = 0.

! Thus, if aligned correctly the added scrambling sequence disappears
leaving M .

NEXT... We compose a working digital radio for idealized operating
conditions, but stuff happens.

Software Receiver Design Johnson/Sethares/Klein 19 / 19

