
6: Sampling with Automatic Gain Control

SAMPLING WITH AUTOMATIC GAIN CONTROL

⋆ Impulse Sampler

⋆ Interpolation

⋆ Iterative Optimization

⋆ Automatic Gain Control

⋆ Tracking Example: Time-Varying Fade

idealized system
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6: Sampling with Automatic Gain Control

Sampling with AGC

Continuing our expansion out from the channel at the center of our
telecommunication system beyond the analog up and down converters

Transmitted�
signal

w!{"3, "1, 1, 3}

Coding

Pulse�
shaping

Analog�
upconversion

Channel

Noise
Other  FDM�

users

P(f)

Analog�
conversion�

to IF

Digital down-�
conversion�

to baseband

EqualizerDownsampling Decision Decoding

Ts�
Input to the�

software �
receiver

Timing�
synchronization

T

Analog�
received�

signal

Reconstructed�
message

Source and�
error coding�

frame synchronization

Q(m)!{"3, "1, 1, 3}

Carrier�
synchronization

Antenna

Carrier�
specification

Binary�
message�

sequence b

m b
^

Pulse�
matched�

filter

# #

we now focus on the sampler and its surrounding automatic gain control
(AGC) in the receiver front end
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6: Sampling with Automatic Gain Control

Impulse Sampler

With w(t) the input to an impulse sampler, the output ws(t) is

ws(t) = w(t)
∞
∑

k=−∞

δ(t− kTs)

Analog w(t) is multiplied point-by-point by a pulse train

Signal w(t)

Pulse train�
% &(t " kTs)

Impulse sampling�
ws(t)

Point sampling�
w[k] $ w(kTs) $ w(t)|t $ kTs
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6: Sampling with Automatic Gain Control

Impulse Sampler (cont’d)

! Using (A.28) with fs = 1/Ts ⇒ Ws(f) = fs
∑

∞

n=−∞
W (f − nfs)

! Relative to W (f), Ws(f) has been scaled by fs and contains replicas
at every fs.

! Largest frequency in W (f) less than fs/2 (top plot) and slightly
larger than f2/2 (bottom)
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6: Sampling with Automatic Gain Control

Impulse Sampler (cont’d)

! Nyquist Sampling Theorem:
If the signal w(t) is bandlimited to B, (W (f) = 0 for all |f | > B)
and if the sampling rate is faster than fs = 2B, then w(t) can be
reconstructed exactly for all t from its samples w(kTs).

! Sub-Nyquist Sampling:
! What if the signal to be sampled is a passband signal, but the signal to

be reconstructed is this passband signal downconverted to a baseband
signal with a much lower maximum frequency?

! Can sub-Nyquist sampling of the passband signal be employed without
aliasing of the baseband signal?

! The following examples provide a positive answer.
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6: Sampling with Automatic Gain Control

Impulse Sampler (cont’d)

! Example:
! Consider fs = fc/2
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! Works for fs = fc/n
! What if fs not exactly fc/n?
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6: Sampling with Automatic Gain Control

Impulse Sampler (cont’d)

! Another Example: For a PAM system the sampler, downconverter,
and downsampler (to symbol period T ) should produce an output x8
with a spectrum matching that of a sampled version (with sample
period T ) of the baseband source x1.
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6: Sampling with Automatic Gain Control

Impulse Sampler (cont’d)

Another Example (cont’d)

! For the following specifications in kHz
⊙ f1 = 50
⊙ f2 = 1690
⊙ f3 = 1920
⊙ f4 = 1460
⊙ f5 = 1620
⊙ f6 = 1760
⊙ f7 = 800
⊙ f8 = 90
⊙ f9 = 60

given |X1(f)| as even-symmetric, triangular shaped, and centered at
zero frequency, we can draw |Xi(f)| for i = 1, 2, ..., 8 to show that
|X8(f)| matches |X1(f)| (up to a scalar gain factor) with M = 2.
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6: Sampling with Automatic Gain Control

Impulse Sampler (cont’d)

Another Example (cont’d)
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6: Sampling with Automatic Gain Control

Impulse Sampler (cont’d)

Another Example (cont’d)
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6: Sampling with Automatic Gain Control

Interpolation

! Objective: Use signal samples from times kTs to reconstruct the
analog signal value at a time instant not among this set of sample
times.

! Sinc interpolator:

w(t)|t=τ = w(τ) =

∫

∞

t=−∞

ws(t)sinc(τ − t)dt

Because ws(t) is nonzero only when t = kTs,

w(τ) =
∞
∑

k=−∞

ws(kTs)sinc(τ − kTs)

! Prescription for perfection: As long as fs > 2B (where B is the
highest frequency present in w(t)) this (doubly infinite) sinc
interpolator is exact.

! Filtering interpretation: Creation of w(τ) can be interpreted as a
convolution of ws with a sinc-shaped impulse response.
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6: Sampling with Automatic Gain Control

Interpolation (cont’d)

! Ideal LPF Interpolator: Convolution in time domain is multiplication
in frequency domain. Spectrum of sinc is a rectangle, i.e. an ideal
LPF. Thus, an ideal lowpass filter with appropriate cutoff frequency is
a perfect interpolator for a Nyquist-sampled signal.

! Perfection inhibiting practicalities: In practice, it is necessary to
truncate the doubly infinite convolutional sum. Furthermore, w(t) can
always be expected to have traces of frequencies above B. Therefore,
in practice, we must settle for an approximation.

! Non-ideal LPF interpolator: Fortunately, any suitable LPF (with
nonzero, flat magnitude and linear phase up to frequency B and fully
rejecting before reaching next higher frequency chunk in spectrum of
ws) will provide accurate interpolation.
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6: Sampling with Automatic Gain Control

Interpolation (cont’d)

Example: Using sininterp to reconstruct a sinusoid sampled five times
per period (as indicated by the choppy staircase zero-order-hold
reconstruction of the samples)
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6: Sampling with Automatic Gain Control

Iterative Optimization

! Task: Find value of x at which polynomial

J(x) = x2 − 4x+ 4

is minimized.
! Plot cost function:

! Zeroing derivative: Setting the derivative

∂J(x)

∂x
= 2x− 4

to zero by selecting x = 2 locates a stationary point, i.e. either a
maximum or minimum.
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6: Sampling with Automatic Gain Control

Iterative Optimization (cont’d)

! Minimum or maximum: The stationary point x = 2 is a minimum
because the derivative of the derivative evaluated at x = 2 is positive,
i.e.

∂2J(x)

∂x2
=

∂(2x− 4)

∂x
= 2

A negative second derivative would indicate a local maximum.

! Iterative gradient descent minimizing strategy: Because the derivative
points toward larger values, we descend in the opposite direction with
µ positive (and small)

x[k + 1] = x[k]− µ
∂J(x)

∂x

∣

∣

∣

∣

x=x[k]

In this case,
x[k + 1] = x[k]− µ(2x[k]− 4)
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6: Sampling with Automatic Gain Control

Iterative Optimization (cont’d)

! Simulated test: From 50 different starting points with µ = 0.01
(using polyconverge), we converge to the desired setting
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! When maximizing: If seeking maximum, would change sign on
correction term so

x[k + 1] = x[k] + µ
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6: Sampling with Automatic Gain Control

Iterative Optimization (cont’d)

! Convergence consequence: If x converges to the tight vicinity of a
particular value, then the update term must be zero (at least on
average). For a gradient descent, this implies that the gradient is
zero, as expected. In our example, zeroing the update term 2x[k]− 4
leads trivially to the desired answer of x = 2.

! Cost function modality: With only one stationary point, our cost
function J(x) = x2 − 4x+ 4 is unimodal. Other cost functions could
be multimodal, which would mean that a gradient descent would be
trapped in a local minimum. The particular local minimum would
depend on the starting value of x.
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6: Sampling with Automatic Gain Control

Automatic Gain Control (AGC)

! An AGC maintains the dynamic range of a (zero-average) signal by
attenuating when it is too large (as in (a)) and by amplifying when
too small (as in (b)).

(a) (b)

! AGC adjusts gain parameter a so average energy at output remains
(roughly) fixed, despite fluctuations in average received energy.

a
r(t) s(kT) $ s[k]

Sampler

Quality�
Assessment
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6: Sampling with Automatic Gain Control

AGC (cont’d)

Gain Tuning:

! We are to choose a for a received waveform r(t) segment that
produces sampler outputs s[k] with the intent of having the average
s2 value over that dataset match a preselected constant S2.

! Because s[k] = ar(kTs), we can choose

a2 =
S2

(

1
N

∑

N

i=1 r
2[k + i]

) =
S2

avg{r2[k]}

(preferring a > 0) to make (as desired)

{
1

N

N
∑

i=1

s2[k + i]} = S2

! Unfortunately, we need the samples of r, which are not available on
the DSP side of the receiver, to solve this formula for a.

! Our search for a gain tuner continues.
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6: Sampling with Automatic Gain Control

AGC (cont’d)

Heuristic Algorithm Development:
As an alternative, consider the following strategy:

! select an initial positive a.

! As a sample s arrives, compare its square to S2.

! If s2 at that particular sample instant is greater than S2, we will
reduce a positive a to a smaller positive value. If a is negative, we
would decrease its magnitude, i.e. increase it toward zero.

! Plus, the correction term should be larger the further s2 is from S2.

! Similarly, if s2 < S2, we will increase a positive a by an amount
proportional to S2 − s2. If a is negative, a should be decreased
(i.e. made more negative), so its magnitude increases.
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6: Sampling with Automatic Gain Control

AGC (cont’d)

An algorithm that performs this strategy is

a[k + 1] = a[k] + µ{sign(a[k])}(S2 − s2[k])

where µ is a suitably small positive stepsize. (The sign(a[k]) term can be
removed if a[k] starts and stays positive.)

! Can this algorithm be implemented from data available on the DSP
side of the sampler?
Ans: Yes, s (and not r) is needed

! Will this algorithm converge to the desired a of ±S/
√

1
N

∑

N

i=1 r
2[k]?

Ans: It depends what you mean by “converge”.
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6: Sampling with Automatic Gain Control

AGC (cont’d)

! The candidate algorithm

a[k + 1] = a[k] + µ{sign(a[k])}(S2 − s2[k])

cannot be expected to converge to a fixed value.

! Because r ranges widely, only on average does a2r2 (or s2) actually
equal S2.

! The resulting (typically) nonzero instantaneous error in S2 − s2 and a
nonvanishing stepsize µ will result in a change in a even if it is
already at the right value for the average behavior of s2.

! A sufficiently small µ should keep this asymptotic rattling within a
tolerable level.
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6: Sampling with Automatic Gain Control

AGC (cont’d)

Testing:
! Using agcgrad with avg{r2} ≈ 1 and S2 = 0.15, the desired

a ≈
√
0.15 ≈ 0.38.

! Start at a[0] = 2 with µ = 0.001
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6: Sampling with Automatic Gain Control

AGC (cont’d)

! Start at a[0] = 0.05 with µ = 0.001
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! Start at a[0] = 2 with µ = 0.02
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6: Sampling with Automatic Gain Control

AGC (cont’d)

Observations:

! Asymptotically, this algorithm hovers in a small region about the
desired answer.

! The asymptotic hovering region’s size can be decreased by reducing
the stepsize µ, which also reduces the algorithm convergence rate.

! When the average value of the hovering parameter has effectively
reached a fixed value, the average of a[k + 1] will equal the average
of a[k] such that from our algorithm

a[k + 1] = a[k] + µsign(a[k])(S2 − s2[k])

the average of the correction term µsign(a[k])(S2 − s2[k]) must be
zero.

! With µ > 0 and the asymptotic hovering a[k] not changing sign,
zeroing the average correction term zeros the average of S2 − s2.
But, indeed that is what we seek.
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6: Sampling with Automatic Gain Control

AGC (cont’d)

Gradient Descent Algorithm Development:

! As a more generalizable approach to adaptor algorithm development
consider specifying a cost function and using an iterative optimizer
based on gradient descent.

! Try JLS(a) = (1/4)avg{
[

s2[k]− S2
]2} with the definition of “avg” as

avg{x[k]} = (1/N)
k−N+1
∑

i=k

x[i]

! With s[k] = ar[k]

JLS(a) = (1/4)avg{
[

a2r2[k]− S2
]2}

! A gradient descent algorithm

a[k + 1] = a[k]− µ
∂JLS(a)

∂a

∣

∣

∣

∣

a=a[k]

requires evaluation of the gradient ∂J /∂a
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6: Sampling with Automatic Gain Control

AGC (cont’d)

! For small stepsize µ, from Appendix G, differentiation and averaging
are approximately interchangeable

∂JLS(a)

∂a
=

(

1

4

)

∂

∂a
[avg{a2r2(kT )− S2)2}]

≈
(

1

4

)

avg{
∂

∂a
[a2r2(kT )− S2)2]}

! So
∂JLS(a)

∂a
≈ avg{ar2(kT )(a2r2(kT )− S2)}

! Replace ar with s and ar2 with s/a and a with a[k]

a[k + 1] = a[k]− µavg{(s2[k]− S2)
s2[k]

a[k]

! This is different from the heuristically developed algorithm.
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6: Sampling with Automatic Gain Control

AGC (cont’d)

! Consider another cost function

JN (a) = avg{|a|((s2[k]/3)− S2)}
! For small stepsize µ, from Appendix G, differentiation and averaging

are approximately interchangeable

∂JN (a)

∂a
=

∂

∂a
[avg{|a|

(

a2r2(kT )

3
− S2

)

}]

≈ avg{
∂

∂a
[|a|

(

a2r2(kT )

3
− S2

)

]}
! With ∂|a|/∂a = sign(a) and (A.60)

∂JN (a)

∂a
≈ avg{|a|(1/3)2ar2(kT )+sign(a)(1/3)a2r2(kT )}−sign(a)S2

! With sign(a)|a| = a

∂JN (a)

∂a
≈ avg{sign(a)

(

a2r2(kT )− S2
)

}
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6: Sampling with Automatic Gain Control

AGC (cont’d)

! With a2r2 = s2

∂JN (a)

∂a
≈ avg{sign(a)

(

s2[k]− S2
)

}

So, the stationary points of zero gradient are in the right places with
avg{s2} = S2.

! With ∂(sign(a))/∂a = 0 everywhere but a = 0, the second derivative
is approximately

avg{
∂

∂a

[

sign(a)
(

a2r2(kT )− S2
)]

}

= avg{2a sign(a)r2(kT )}

= avg{2|a|r2(kT )} > 0

So, stationary points at other than a = 0 are minima.
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6: Sampling with Automatic Gain Control

AGC (cont’d)

! With constant avg{r2} and S, JN has double dip “egg carton” style
cross section as does JLS .

! For specific data set (with N = 1000) in agcerrorsurf
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6: Sampling with Automatic Gain Control

AGC (cont’d)

! Computation of the gradient requires that a remain constant over the
N samples over which avg{s2} is composed.

! Consider squeezing the averaging window to a single sample so
N = 1 and

a[k + 1] = a[k]− µsign(a[k])
(

s[k]2 − S2
)

! This is the algorithm developed heuristically and tested previously.

! This algorithm also emerges from first reducing the averaging window
to N = 1 in the cost function and then taking the gradient and
forming a gradient descent iteration.

! This technique of shrinking the averaging window so averaging is
explicitly removed works because LPF action of adaptation acts
similarly to averaging before updating.
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6: Sampling with Automatic Gain Control

Tracking Example: Time-Varying Fade

! To demonstrate desired tracking capability, use agcvsfading to test

a[k + 1] = a[k]− µsign(a[k])
(

s[k]2 − S2
)

with µ = 0.01, S2 = 0.5, a[1] = 1, and a large, slow, oscillating
channel gain (initially 0.75)
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Iterations

! Fade must be changing sufficiently slowly and the input must never
die for the AGC with small stepsize to track adequately.

NEXT... DFT and digital filter design tidbits for the variety of linear
filters in a recevier.
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