Last time: Parabolic PDEs were introduced.
Solution of Parabolic PDEs propagate from ICs and are constrained by BCs.

Various time weightings were introduced with the most general formulation as:

\[-r\theta, 1 + 2r\theta, -r\theta, -r(1 - \theta), -1 + 2r(1 - \theta), -r(1 - \theta)\]

with \(\theta = 0.5\)

Crank Nicolson 0(h^2 + k^2)

3 Classic Definitions

Convergence \(U_i^m \rightarrow \mu(x_i, t^m)\)

Consistency \(L_i \rightarrow L\)

Stability \(U_i\) bounded for bounded B. C.

Discrete System Convergence on an Euler Explicit Scheme

\[\|\varepsilon\|^m \leq A(k + h^2) mk = A(k + h^2) t\] at given point in time
Stability: Fourier Method (Von Neumann)
as with elliptic systems

Let \(U \) represent the solution to the PDE (or any finite difference approximation). Any function (\(U \) analytic, \(U \) numeric, or any form of error, be it a small perturbation introduced or the difference between \(U_{\text{numeric}} - U_{\text{analytic}} \)) can be represented by a Fourier series. If the function is finite (i.e. point to point), then the Fourier series is finite too.

• Assume a separable solution \(U = A e^{\alpha t} e^{j\sigma \chi} \quad j = \sqrt{-1} \)
• Plug into PDE will result in a dispersion relation between \(\alpha \) and \(\sigma \)
• Synthesize Solution (Linearity, Superposition)
 \[
 U(\chi, t) = \sum_i A_i e^{\alpha_i t} e^{j\sigma_i \chi}
 \]

Since we are only interested in finding any harmonic that goes unstable, the index \((i) \) can be dropped from the formulation.

Recall: \(\sigma = \frac{2\pi}{L} \quad 2h \leq L < \infty \)
\[
\Rightarrow \quad 0 < \sigma \leq \frac{\pi}{h}
\]

Distributed System (PDE)
\[
\frac{\partial U}{\partial t} = D \frac{\partial^2 U}{\partial x^2} \quad \Rightarrow \quad \alpha = -D\sigma^2
\]
- Stable system \((\alpha < 0 \text{ time amplifier})\)
 \(\therefore \) solution smooths over time
- Longest waves (L or f(1/σ)) decay slowest
 for large L : \(\sigma \rightarrow 0 \rightarrow |\alpha| \) becomes small
 \(e^{\alpha t} \) decay is slow

Lumped Systems: Spatial Discretizations, O.D.E.

\[
\frac{dU_i}{dt} = \frac{D}{h^2} \delta_x^2 U_i = \frac{D}{h^2} (U_{i-1} - 2U_i + U_{i+1})
\]

Recall: \(U = Ae^{\alpha t}e^{j\sigma \chi} \) \(\Rightarrow \delta_x^2 U_i = (e^{-j\sigma h} - 2 + e^{j\sigma h}) U_i = 2(\cos(\sigma h) - 1) U_i \)

Then

\[
\alpha U_i = \frac{2D}{h^2} (\cos(\sigma h) - 1) U_i
\]

or

\[
\alpha = -D\sigma^2 \left[\frac{2(1 - \cos(\sigma h))}{\sigma^2 h^2} \right]
\]

Effect of Lumping (FD in \(\chi \))

Use series expansions for transcendental functions (like exp, trig., etc.) to see where the finite difference approximation deviates from the PDE.

\[
\cos(\sigma h) = 1 - \frac{(\sigma h)^2}{2!} + \frac{(\sigma h)^4}{4!} - \cdots
\]

Retain \(O(h^2) \) for any \(\sigma \rightarrow h.o.t \)
\[
\alpha = -D\sigma^2 \left[1 - \frac{2(\sigma h)^2}{4!} + \cdots \right] = -D\sigma^2 \left[1 - \frac{(2\pi h)^2}{12} + \cdots \right]
\]

Accuracy depends on \(\sigma h = \frac{2\pi h}{L} \)

i.e. \(h \) meaningful only relative to \(L \)

Also since \(2h \leq L \) all \(\alpha < 0 \) \(\Rightarrow \) stable

Compare Distributed \(\left(\frac{\alpha}{-D\sigma^2} \right) \) and Lumped Systems

a.) Lumped is under damped relative to Distributed
b.) Error is greatest as small \(L/h \)
Introduce the Propagation Factor, γ_0

Expressing U as:
$$U = Ae^{\alpha t} e^{j\sigma \chi} \quad j = \sqrt{-1}$$

Distributed System:
$$\alpha = -D\sigma^2$$

Lumped System
$$\alpha' = -D\sigma^2 \left[1 - \frac{(\sigma h)^2}{12} + \cdots \right]$$

$$r = \frac{D\Delta t}{h^2} \quad \frac{U(t + \Delta t)}{U(t)} = e^{\alpha \Delta t} \equiv \gamma$$

Distributed:
$$\gamma = e^{-D\sigma^2 \Delta t} = e^{-r(\sigma h)^2}$$

Lumped:
$$\gamma' = e^{-D\sigma^2 \Delta t \left[1 - \frac{(\sigma h)^2}{12} + \cdots \right]} = \gamma e^{+D\sigma^2 \Delta t \frac{(\sigma h)^2}{12}} \cdot e(\cdot)$$

$$e^x = 1 + x + \frac{x^2}{2!} + \cdots$$

$$\gamma' = \gamma \left[1 + D\sigma^2 \Delta t \frac{(\sigma h)^2}{12} + \cdots \right] \cdot [1 + \cdots] \cdot [] \cdots$$

- error $\sim t$
- error$(t) \sim h^2$
Discrete System: e.g. Euler explicit

\[U_{i}^{k+1} = U_{i}^{k} + r \delta_{x}^{2} U_{i}^{k} \]

\[U_{i}^{k+1} = \gamma_{o} U_{i}^{k} \quad ; \quad \delta_{x}^{2} U_{i} = 2(\cos \sigma h - 1) U_{i} \]

\[\Rightarrow \quad \gamma_{o} U_{i}^{k} = U_{i}^{k} - 2r(1 - \cos \sigma h) U_{i}^{k} \]

\[\gamma_{o} = 1 - 2r(1 - \cos \sigma h) \quad 0 \leq \sigma h \leq \pi \]

\[\gamma_{o} \leq 1 \quad \text{Always} \]

\(\gamma_{o} \) negative when \(1 - 2r(1 - \cos \sigma h) < 0 \)

if \(\gamma_{o} \) is <0 (but > -1) this will result in oscillations in time. For the Euler explicit formulation, these oscillations will occur when:

\[\frac{1}{2(1 - \cos \sigma h)} < r \]

i.e. when \(r > \frac{1}{4} \) \(\Rightarrow \) the shortest waves will begin to oscillate.

If \(\gamma_{o} \) is <-1 then the error is increasing every time step and the formulation will be unstable. For the Euler explicit formulation, this instability will occur when:

\[|\gamma_{o}| > 1 \quad \text{when} \quad \gamma_{o} < -1 \]

This situation is entirely a numerical artifact; it has no basics in reality (PDE).
\[1 - 2r(1 - \cos\sigma h) < -1 \]
\[2 < 2r(1 - \cos\sigma h) \]

\[\frac{1}{(1 - \cos\sigma h)} < r \]

That is, when \(r > \frac{1}{2} \) \(\Rightarrow \) the shortest waves have unstable oscillations.

Stability criterion

\[r < \frac{1}{2} \]

Note: dimensionless form

Recall: Discrete system convergence

\[|\varepsilon_i|^{k+1} \leq |r| \cdot |\varepsilon_{i-1}|^k \]
\[+ |1 - 2r| \cdot |\varepsilon_i|^k \]
\[+ |r| \cdot |\varepsilon_{i+1}|^k \]

\[r < \frac{1}{2} \]

\[|1 - 2r| = 1 - 2r \]