Prüfungsschwerpunkte Wahrscheinlichkeitstheorie I

1. Mathematische Modellbildung

Diskrete Wahrscheinlichkeitsräume (Definition, Beispiele, Eigenschaften von Wahrscheinlichkeitsmaßen)

2. Unabhängigkeit

Unabhängige Ereignisse und Zufallsvariable (Definition, Beispiele, Gegenbeispiele), bedingte Wahrscheinlichkeiten, Rechnen mit bedingten Wahrscheinlichkeiten

3. Diskrete Verteilungen und Urnenprobleme

Bernoulli-Schema, Bernoulli-Variable, Binomialverteilung, geometrische Verteilung, hypergeometrische Verteilung, Urnenschemata

4. Zufallsvariable

Diskrete und stetige Zufallsvariable, Verteilungsfunktion, Erwartungswert, Varianz, Momente, Poisson- und Exponentialverteilung, Chebyshev-Ungleichung (Beweis), Cauchy-Schwarz-Ungleichung (Beweis), Unabhängigkeit und Unkorreliertheit

5. Erzeugende Funktionen

Definition, Momente, erzeugende Funktionen und Summen unabhängiger (diskreter) Zufallsgrößen, Poissonscher Grenzwertsatz

6. Charakteristische Funktionen

Definition, grundlegende Eigenschaften, Beispiele

7. Normalverteilung

Definition, lineare Transformationen normalverteilter Vektoren

8. Summen unabhängiger Zufallsgrößen

Faltung von Verteilungen, Erwartungswert und Varianz von Summen, schwaches (Beweis) und starkes Gesetz der großen Zahlen, zentraler Grenzwertsatz (Beweisidee)

9. Markovketten

Definition, stochastische Matrizen, Chapman-Kolmogorov-Gleichung, Beispiele (insbesondere Irrfahrten), stationäre und invariante Verteilungen, Grenzwertsatz für Markovketten, Klassifizierung der Zustände