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Abstract

We study the semilinear partial differential equation (PDE) associated with the non-linear BSDE
characterizing buyer’s and seller’s XVA in a framework that allows for asymmetries in funding,
repo and collateral rates, as well as for early contract termination due to counterparty credit risk.
We show the existence of a unique classical solution to the PDE by first proving the existence
and uniqueness of a viscosity solution and then its regularity. We use the uniqueness result to
conduct a thorough numerical study illustrating how funding costs, repo rates, and counterparty
risk contribute to determine the total valuation adjustment.

1 Introduction
We study the total valuation adjustment (XVA) of a European style claim under differential borrowing
and lending rates. We adopt the framework introduced in the companion paper of Bichuch et al.
(2015), where the authors define buyer’s and seller’s XVA in terms of solutions to non-linear BSDEs.
These characterize the portfolio process replicating long and short positions in the claim, and take
into account early termination of the contract due to counterparty credit risk, funding spreads, as
well as collateral servicing costs. When funding spreads are zero, security lending and borrowing rates
coincide, and collateral rates paid by the taker equal the ones received by the provider, Bichuch et
al. (2015) give explicit expressions for the XVA as well as for the corresponding replicating strategies.
However, in most realistic market scenarios, rates are asymmetric and funding spreads constitute a
significant driver of XVA. Despite the unavailability of closed form expressions, in this paper we show
that we can exploit the connection between the BSDEs and the corresponding nonlinear PDEs to
study how funding costs, collateral and counterparty risk affect the total valuation adjustment.

Our study extends previous literature along two directions. First, we develop a rigorous study of
the semilinear PDEs associated with the nonlinear BSDEs introduced in Bichuch et al. (2015) and
yielding the XVA prices. Previous studies in this direction include Mercurio (2015), who gives the
PDE representations for the lower and upper bound prices of options in an extended Piterbarg (2010)’s
model where borrowing and lending rates differ. However, he does not take into account counterparty
risk. This is accounted for in Burgard and Kjaer (2011a) and Burgard and Kjaer (2011b), who consider
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an extended Black-Scholes framework where two corporate bonds are introduced in order to hedge the
default risk of the trader and of his counterparty. They generalize their framework in Burgard and
Kjaer (2013) to include collateral mitigation and evaluate the impact of different funding strategies.
We also mention Crépey and Song (2014) who study a BSDE with random terminal time of the type
appearing in a funding valuation context, but do not develop connections to the resulting PDE.

We prove the existence and uniqueness of a viscosity solution to the PDE. We extend standard
results of Delong (2013) by using the locality of the viscosity solution, and also by accounting for
the possibility of default risk. We then show that the PDE also admits a classical solution implying
existence and uniqueness of the classical solution. Our result contrasts with earlier studies in the
funding literature, e.g. Burgard and Kjaer (2011b), where smoothness of the price of the derivative
contract with respect to the underlying spot asset price is usually assumed to hold, and the PDE is
derived after assuming that the market does not admit arbitrage. Using the classical solution, we
compute the replicating strategies of the traded claim in a portfolio consisting of a stock, and risky
bonds of the trader and of his counterparty. To the best of our knowledge, this is the first study
to establish this result. Crépey (2015a) develops a connection between the funding BSDE and the
solution of a classical PDE, but in a different framework where the resulting PDE is linear and the
market model complete, see Section 5.2 therein. We also mention the recent work of Nie and Rutkowski
(2013) who establish classical solutions to quasi-linear PDEs corresponding with BSDEs yielding the
fair bilateral prices of a European contingent claim. Their work, however, does not consider the
possibility that the trader or his counterparty can default.

A second noticeable contribution of our study is a comprehensive numerical analysis made possible
by the previously established existence and uniqueness result. Earlier studies on funding, such as
Bielecki and Rutkowski (2014), Crépey (2015a), and Brigo et al. (2012) lack the computational com-
ponent. We find strong sensitivity of XVA to funding costs, counterparty risk and collateralization
levels. Viewing both buyer’s and seller’s XVA as functions of collateral levels defines a no-arbitrage
band whose width increases with the funding spread. As the position becomes more collateralized,
the value of the closeout payment increases and leads the trader to implement a riskier strategy. This
yields increased buyer’s and seller’s XVA. Interestingly, both of these quantities may decrease in the
counterparty’s default intensity as the default premium compensation demanded by the investor for
holding counterparty bonds becomes higher than the funding costs incurred for replicating the close-
out position. Moreover, increased values of counterparty’s default intensity reduce both seller’s and
buyer’s XVA by a similar amount.

Our findings serve as a useful guide to risk-management and trading desks, who can decide on the
terms of the trades (collateralization levels, borrowing rates charged by treasury, etc...) based on the
incurred costs as measured by XVA.

The rest of the paper is organized as follows. Section 2 reviews the framework for computing XVA
introduced in Bichuch et al. (2015). Section 3 analyzes the semilinear PDEs. Section 4 develops a
comprehensive numerical analysis. Section 5 concludes the paper.

2 The Setup
We review the setup introduced in the companion paper by Bichuch et al. (2015) and refer to sections
2 and 3 of their paper for additional details. We give here a self-contained exposition needed to
understand the PDE analysis presented in the next section. We fix a probability space (Ω,G,P),
where P denotes the physical measure. The market filtration is Gt := Ft ∨ Ht, t ≥ 0, where the
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filtrations Ft and Ht will be specified later in the section.
We take the viewpoint of an investor “I” (also referred to as trader or hedger) who wants to compute

the total valuation adjustment, abbreviated as XVA, of a European claim traded with a counterparty
“C”. The claim is written on a stock whose time t price is denoted by St. The claim matures at T and
has terminal payoff Φ(ST ), where Φ : R>0 → R is a piecewise continuously differentiable real valued
function of polynomial growth. The value of the claim as determined by a third party evaluator is
given by

V̂ (t, St) = e−rD(T−t)EQ[Φ(ST )
∣∣Ft],

where the valuation measure Q associated with the publicly available discount rate rD chosen by the
valuation agent is equivalent to P and given by the Radon-Nikodým density

dQ
dP

∣∣∣∣
Gτ

= e
rD−µ
σ

W P
τ−

(rD−µ)2

2σ2 τ
(µI − rD

hPI

)HI
τ
e(rD−µI+hPI)τ

(µC − rD
hPC

)HC
τ
e(rD−µC+hPC)τ . (1)

2.1 The Portfolio securities

This section describes the securities at disposal of the investor to construct his replicating portfolio.
They include the default-free stock on which the financial claim is written, and two risky bonds
underwritten by the trader and by his counterparty. Under the physical measure, the dynamics of the
stock price process is given by

dSt = µSt dt+ σSt dW
P
t ,

where µ and σ are constants. Moreover, W P is a standard Brownian motion under the probability
measure P. We set F := (Ft)t≥0 to be the (G,P)-augmentation of the filtration generated by W P.

Let τI and τC be the default times of the trader and of his counterparty, respectively. These are
independent exponentially distributed random variables with constant intensities hPi , i ∈ {I, C}. We
use H i

t = 1l{τi≤t}, t ≥ 0, to denote the default indicator process of the i-th name. The default event
filtration is set to Ht := σ(HI

u, H
C
u ;u ≤ t).

The two risky bonds underwritten by the trader I and by his counterparty C mature have the
same maturity T of the claim. For 0 ≤ t ≤ T , i ∈ {I, C}, their price processes admit dynamics given
by

dP it = (ri + hPi )P it dt− P it− dH i
t , P i0 = e−(ri+hPi )T , (2)

where ri is constant. Throughout the paper, we set τ := τI ∧ τC ∧ T . We also recall the following
relation, given in Bichuch et al. (2015), between the physical measure P and the valuation measure Q:

WQ
t = W P

t + µ− rD
σ

t

$i,Q
t = $i,P

t +
∫ t

0

(
1−H i

u

)
(hPi − h

Q
i )du, i ∈ {I, C},

hQi = hPi + ri − rD, i ∈ {I, C}. (3)

2.2 Security, Funding, and Collateral Accounts

This section describes the various trading accounts used by the hedger to finance the strategy repli-
cating the price process of the claim.
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2.2.1 The Security Account

Financing and lending activities related to the stock security happen via the repo market. We denote
by r+

r the rate received by the hedger when he lends money to the repo market. Symmetrically, we
denote by r−r the rate he has to pay when he borrows money from the repo market. Let ψt be the
number of shares of the security account at time t. The value of this account at t is given by

Brr
t := Brr

t

(
ψ
)

= e
∫ t

0 rr(ψs)ds, (4)

where
rr(x) = r−r 1l{x<0} + r+

r 1l{x>0}. (5)

2.2.2 The Funding Account

The hedger finances the portfolio strategy to replicate the claim from his treasury. We denote by r+
f

the rate at which the hedger lends cash to the treasury, and by r−f the rate at which he borrows cash
from it. Let ξft denote the number of shares of the funding account at time t, whose value is given by

B
rf
t := B

rf
t

(
ξf ) = e

∫ t
0 rf (ξfs )ds, (6)

where
rf := rf (y) = r−f 1l{y<0} + r+

f 1l{y>0}. (7)

2.2.3 Collateral Account

Each party posts collateral to mitigate potential losses incurred by the other party in case of default.
Collateral is in the form of variation margins, i.e. cash transfers are made by the out-of-the money
party to cover unfavourable moves in the value of the underlying transaction. On {τI ∧ τC > t}, the
collateral process is given by

Ct := αV̂ (t, St), (8)

where the collateral level 0 ≤ α ≤ 1 determines the amount of covered exposure. Notice that in our
setup, if the investor sold the claim to his counterparty, then he is always the collateral taker (Ct < 0),
while if he purchased the claim from this counterparty he is always the collateral provider (Ct > 0).
We denote by r+

c the rate on the collateral amount received by the hedger if he has posted collateral,
and by r−c the rate paid by the hedger if he has received collateral. The collateral account is defined
by

Brc
t := Brc

t (C) = e
∫ t

0 rc(Cs)ds,

where
rc(x) = r+

c 1l{x>0} + r−c 1l{x<0}.

We use ψct to denote the number of shares of collateral account held by the hedger at time t. It then
holds that

ψctB
rc
t = −Ct (9)
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2.3 Close-out Value of Transaction

Since both the hedger and his counterparty can default, the transaction can terminate prematurely.
In the event of a default, the mark-to-market value of the transaction equals the residual value,
after mitigating on-default related losses with the available collateral. Let x+ := max(x, 0), and
x− := max(0,−x), be respectively the positive and negative parts of a real number x. Denote by
θτ (V̂ ) the value of the transaction which must be replicated by the hedger at the earlier of the
two: the hedger’s, or the counterparty’s default time (if positive the hedger owes this amount to the
counterparty). This is given by

θτ (V̂ ) = θτ (C, V̂ ) (10)

:= V̂ (τ, Sτ ) + 1l{τC<τI}LC
(
V̂ (τ, Sτ )− Cτ−

)− − 1l{τI<τC}LI
(
V̂ (τ, Sτ )− Cτ−

)+
Here 0 ≤ LI ≤ 1 and 0 ≤ LC ≤ 1 are constant loss rates. We refer to Section 3.3 of Bichuch et al.
(2015) for a detailed explanation.

2.4 Total Valuation Adjustment

We review the definition of XVA given in Bichuch et al. (2015). Denote by Vt(ϕ) the wealth process
of the hedger associated with the strategy ϕ, where ϕ :=

(
ξt, ξ

f
t , ξ

I
t , ξ

C
t t ≥ 0

)
. We recall from above

that ξf is the number of shares of the funding account. We use ξ to denote the number of stock shares.
Moreover, ξI and ξC denote the number of shares of the bonds underwritten by the trader, and by his
counterparty, respectively. The wealth process V (ϕ) is given by the following expression

Vt(ϕ) := ξtSt + ξIt P
I
t + ξCt P

C
t + ξft B

rf
t + ψtB

rr
t − ψctB

rc
t . (11)

Bichuch et al. (2015) show that, under the valuation measure Q, the dynamics of the wealth process
is given by

dVt =
(
r+
f

(
ξft B

rf
t

)+ − r−f (ξft Brf
t

)− + (rD − r−r )
(
ξtSt

)+ − (rD − r+
r )
(
ξtSt

)− + rDξ
I
t P

I
t + rDξ

C
t P

C
t

)
dt

−
(
r+
c

(
Ct
)+ − r−c (Ct)−) dt+ ξtσSt dW

Q
t − ξIt−P It− d$

I,Q
t − ξCt−PCt−d$

C,Q
t

(12)

Setting
Zt = ξtσSt, ZIt = −ξIt−P It−, ZCt = −ξCt−PCt−,

the dynamics (12) may be rewritten as

dVt =
(
r+
f

(
Vt + ZIt + ZCt − Ct

)+ − r−f (Vt + ZIt + ZCt − Ct
)−

+ (rD − r−r ) 1
σ

(
Zt
)+ − (rD − r+

r ) 1
σ

(
Zt
)− − rDZIt − rDZCt − (r+

c

(
Ct
)+ − r−c (Ct)−) )dt

+ Zt dW
Q
t + ZIt d$

I,Q
t + ZCt d$

C,Q
t (13)

Next, we distinguish between V +
t and −V −t . We use V +

t to describe the wealth process of the hedger
when he replicates the claim Φ(ST ) (hence hedging the position after selling the claim with terminal
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payoff Φ(ST )). On the other hand −V −t describes the wealth process when replicating the claim
−Φ(ST ) (hence hedging the position after buying the claim with terminal payoff Φ(ST )). To this
purpose, define

f+(t, v, z, zI , zC ; V̂
)

= −
(
r+
f

(
v + zI + zC − αV̂t

)+ − r−f (v + zI + zC − αV̂t
)−

+ (rD − r−r ) 1
σ
z+ − (rD − r+

r ) 1
σ
z− − rDzI − rDzC

+ r+
c

(
αV̂t

)+ − r−c (αV̂t)−) (14)

f−
(
t, v, z, zI , zC ; V̂

)
= −f+(t,−v,−z,−zI ,−zC ;−V̂t

)
(15)

where the driver depends on the market evaluation process (V̂t) (via the collateral (Ct)). In particular
f± : Ω× [0, T ]×R4, (ω, t, v, z, zI , zC) 7→ f±

(
t, v, z, zI , zC ; V̂t(ω)

)
are drivers of the BSDEs. Moreover,

define V +, V − as solutions of the BSDEs{
−dV +

t = f+(t, V +
t , Z

+
t , Z

I,+
t , ZC,+t ; V̂

)
dt− Z+

t dW
Q
t − Z

I,+
t d$I,Q

t − ZC,+t d$C,Q
t

V +
τ = θτ (V̂ )1l{τ<T} + Φ(ST )1l{τ=T}

(16)

and {
−dV −t = f−

(
t, V −t , Z

−
t , Z

I,−
t , ZC,−t ; V̂

)
dt− Z−t dW

Q
t − Z

I,−
t d$I,Q

t − ZC,−t d$C,Q
t

V −τ = θτ (V̂ )1l{τ<T} + Φ(ST )1l{τ=T}
(17)

We have the following main theorem

Theorem 2.1 (Bichuch et al. (2015)). Assume that

r+
r ≤ r+

f ≤ r
−
r , r+

f ≤ r
−
f , r+

f ∨ rD < rI + hPI , r+
f ∨ rD < rC + hPC , (18)

and
r+
c ∨ r−c ≤ r−f ≤

(
rI + hPI

)
∧
(
rC + hPC

)
. (19)

If V −0 ≤ V +
0 then there exist prices πsup and πinf , πinf ≤ πsup, (called hedger’s upper and lower

arbitrage price) for the claim Φ(ST ) such that all prices in the closed interval [πinf , πsup] are free of
hedger’s arbitrage. In particular, we have that πsup = V +

0 and πinf = V −0 .

The total valuation adjustment XVA is defined as the amount that needs to be added to the Black-
Scholes price (exclusive of funding costs) to get the actual price (inclusive of funding costs). This is
asymmetric for sell- and buy-prices. Bichuch et al. (2015) define the XVAs as follows.

Definition 2.2. The seller’s XVA is the G-adapted stochastic process (XVAsellt ) defined by

XVAsellt := V +
t − V̂ (t, St)

while the buyer’s XVA is defined as

XVAbuyt := V −t − V̂ (t, St).

XVAsell corresponds to the total costs that the hedger incurs when replicating the payoff of a
claim he sold, whereas XVAbuy corresponds to the total costs that he incurs when replicating the
payoff of a claim he purchased. We note that the difference of the XVAs also describes the width of
the no-arbitrage interval, as

XVAsell0 −XVAbuy0 = V +
0 − V

−
0 .
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3 PDE representations of XVA
This section derives the PDE representations corresponding to the master BSDEs (16) and (17). For
brevity, we will state everything with regards to the upper no-arbitrage price V +, while noting that
the treatment for V − is identical. For notational convenience, we will drop the plus superscript, and
refer to V +, Z+, ZI,+, ZC,+ and f+ simply as V,Z, ZI , ZC and f .

Remark 3.1. In the sequel, we write the solution of the BSDE (16) on {t < τ} as v(t, s, wI , wC),
where v(t, St, $I,Q

t , $C,Q
t ) = Vt1l{τ>t}. The existence of such a measurable function v, i.e. the fact that

V is Markovian, is shown in Proposition 4.1.1 in Delong (2013).

To simplify notation, we will not specify the argument of the latter functions. Then we can rewrite
the BSDE in (16) as

−dVt = f(t, Vt, Zt, ZIt , ZCt ; V̂t)dt− ZtdWQ
t − ZIt d$

I,Q
t − ZCt d$

C,Q
t (20)

= f(t, Vt, Zt, ZIt , ZCt ; V̂t)dt− ZtdWQ
t −

∫
R
ZIt Ñ

I,Q(dt, dr)−
∫
R
ZCt Ñ

C,Q(dt, dr),

Vτ = θτ (V̂ )1l{τ<T} + Φ(ST )1l{τ=T} (21)

where Ñ j,Q, j ∈ {I, C}, are the compensated Poisson random measures such that

$j,Q
t =

∫ t

0

∫
R
Ñ j,Q(ds, dr), j ∈ {I, C},

on [0, τ ] (we also refer to the proof of Theorem A.2 in Bichuch et al. (2015) for technical details). Let
v̂(t, s) be the price of the claim at time t conditioned on St = s, i.e. v̂(t, St) = V̂t.

Theorem 3.2. Under the no-arbitrage conditions in (18), v is a viscosity solution of the following
PDE:

− vt −
∑

j∈{I,C}
hQj
(
θj(v̂(t, s))− v(t, s, wI , wC)− vj

)
− rDsvs −

1
2σ

2s2vss (22)

− f(t, v, σsvs(t, s, wI , wC), θI(v̂(t, s))− v(t, s, wI , wC), θC(v̂(t, s))− v(t, s, wI , wC); v̂(t, s)) = 0,
v(T, s, ·, ·) = Φ(s). (23)

Here, we have used the notation vi = ∂v
∂wi

, i ∈ {I, C}, and with slight abuse of notation θi, i ∈ {I, C},
corresponds to the price of the contract at default of either party, similar to the way it was defined in
(10). Specifically,

θC(v̂) := v̂ + LC((1− α)v̂)−,
θI(v̂) := v̂ − LI((1− α)v̂)+.

Additionally, v is the unique viscosity solution of the PDE (22) – (23) satisfying the growth condition
lim
|x|→∞

|v(·, ex, ·, ·)| e−c log2|x| = 0, c > 0.

Proof. The following proof is an extension of the results from Theorem 4.2.2 in Delong (2013) along
two directions. The first is that, by contrast with Delong, we use the local property (as opposed to the
global property) of the viscosity solution (cf. e,g, (Shreve and Soner, 1994, Section 7)). The second is
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that we account for the occurrence of defaults, thus we need to extend the argument of Delong (2013)
to the case when the terminal time is a stopping time, rather than constant. Concretely, we need to
consider the solution on the set {t < τ}. Let φ ∈ C1,2,2,2([0, T ]×R>0×R×R

)
be a smooth function, such

that φ ≥ v and φ(t0, s0, w
I
0, w

C
0 ) = v(t0, s0, w

I
0, w

C
0 ) for some fixed (t0, s0, w

I
0, w

C
0 ). Instead of working

with φ directly, we will work with a local approximation. Let h > 0 be small enough, such that
t0 + h < T . As the default intensities hQI , h

Q
C are constant, it follows that Q[τ > t0] and Q[τ > t0 + h]

are both strictly positive. Additionally, w.l.o.g. we may assume that φ is bounded. Specifically, let
{φn}n≥1 be a subsequence such that φn ∈ C1,2,2,2

b

(
[0, T ] × R>0 × R × R

)
is also bounded, satisfying

φn ∧ n ∨ (−n) = φ ∧ n ∨ (−n), and such that it converges to φ together with its derivatives uniformly
on compacts. For some n0 >

∣∣v(t0, s0, w
I
0, w

C
0 )
∣∣, we have that φn0 ≥ v locally. Let U(t0, s0, w

I
0, w

C
0 ) be

an open neighborhood of the point (t0, s0, w
I
0, w

C
0 ) such that φn0 ≥ v and (by possibly decreasing h)

such that (t, s0, w
I
0, w

C
0 ) ∈ U(t0, s0, w

I
0, w

C
0 ) for any t ∈ [t0, t0 + h]. Next, choose

n1 ≥ n0 + sup
(t,s,wI ,wC)∈U(t0,s0,wI0 ,w

C
0 )

{∣∣φ(t, s, wI , wC)
∣∣, ∣∣θC(v̂(t, s))

∣∣, ∣∣θI(v̂(t, s))
∣∣}.

This allows us to make the further assumption that (t0, s0, w
I
0 + 1, wC0 ) ∈ U(t0, s0, w

I
0, w

C
0 ) and

(t0, s0, w
I
0, w

C
0 + 1) ∈ U(t0, s0, w

I
0, w

C
0 ) by possibly extending the open neighborhood, because we have

that φn1+1(t0, s0, w
I
0 + 1, wC0 ) ≥ θI(v̂(t, s)), and φn1+1(t0, s0, w

I
0, w

C
0 + 1) ≥ θC(v̂(t, s)). We now have

that φn1+1(t, St, $I,Q
t , $C,Q

t ) ≥ Vt, t ∈ [t0, t0 +h], even if the default happens during this time interval.
In the sequel, we will use φn1+1 in place of φ, but we will abuse notation and continue referring to it
as φ.

For t0 ≤ t ≤ t0 + h define (V̄ , Z̄, Z̄I , Z̄C) to be a solution to the following BSDE:

V̄t∧τ1l{τ>t} := φ((t0 + h) ∧ τ, S(t0+h)∧τ , $
I,Q
(t0+h)∧τ , $

C,Q
(t0+h)∧τ )1l{τ>t}

+
∫ (t0+h)∧τ

t∧τ
f(r, V̄r, Z̄r, Z̄Ir , Z̄Cr ; V̂r)dr −

∫ (t0+h)∧τ

t∧τ
Z̄rdW

Q
r −

∑
j∈{I,C}

∫ (t0+h)∧τ

t∧τ

∫
R
Z̄jr Ñ

j,Q(dr, dρ).

This BSDE has a unique solution by Theorem A.2 in Bichuch et al. (2015), so V̄ is well defined. By
the comparison Theorem A.3 in Bichuch et al. (2015), we obtain that V̄t∧τ1l{τ>t} ≥ Vt∧τ1l{τ>t}.

For convenience, we define the operator

Lu(t, s, wI , wC) = rDsus +
∫
R

(
u(t, s, wI + 1, wC)− u(t, s, wI , wC)− uI(t, s, wI , wC)

)
νI(dz)

+ σ2s2

2 uss +
∫
R

(
u(t, s, wI , wC + 1)− u(t, s, wI , wC)− uC(t, s, wI , wC)

)
νC(dz),

where the Lévy measure νj(dx) = hQj δ1(dx), j ∈ {I, C}, with δ1 being the Dirac measure concentrated
at 1. Additionally, let

Θ̄(t, s, wI , wC) = φt(t, s, wI , wC) + Lφ(t, s, wI , wC),
Γ̄I(t, s, wI , wC) = φ(t, s, wI + 1, wC)− φ(t, s, wI , wC),
Γ̄C(t, s, wI , wC) = φ(t, s, wI , wC + 1)− φ(t, s, wI , wC),

¯̄Vt = V̄t − φ(t, St, $I,Q
t $C,Q

t ),
¯̄Zt = Z̄t − σStφS(t, St, $I,Q

t− , $
C,Q
t− ),

¯̄Zjt = Z̄jt − Γ̄j(t, St, $I,Q
t− , $

C,Q
t− ), j ∈ {I, C}.

8



By Itô’s formula, we have that for t0 ≤ t ≤ (t0 + h)

φ(t ∧ τ, St∧τ , $I,Q
t∧τ , $

C,Q
t∧τ )1l{τ>t} = φ((t0 + h) ∧ τ, S(t0+h)∧τ , $

I,Q
(t0+h)∧τ , $

C,Q
(t0+h)∧τ )1l{τ>t}

−
∫ (t0+h)∧τ

t∧τ
Θ̄(r, Sr, $I,Q

r− , $
C,Q
r− )dr − σ

∫ (t0+h)∧τ

t∧τ
Srφs(r, Sr, $I,Q

r− , $
C,Q
r− )dWQ

r

−
∑

j∈{I,C}

∫ (t0+h)∧τ

t∧τ

∫
R

Γ̄j(r, Sr, $I,Q
r− , $

C,Q
r− )Ñ j,Q(dr, dρ).

It follows that

¯̄Vt∧τ1l{τ>t} =
∫ (t0+h)∧τ

t∧τ

(
Θ̄(r, Sr, $I,Q

r− , $
C,Q
r− ) + f(r, ¯̄Vr + φ, ¯̄Zr + σSrφs,

¯̄ZIr + Γ̄I , ¯̄ZCr + Γ̄C ; V̂r)
)
dr

−
∫ (t0+h)∧τ

t∧τ

¯̄ZrdWQ
r −

∑
j∈{I,C}

∫ (t0+h)∧τ

t∧τ

∫
R

¯̄Zjr Ñ j,Q(dr, dρ). (24)

Now, assume by contradiction that φ violates the subsolution property, i.e. there exists ε > 0 such
that

− φt(t0, s0, w
I
0, w

C
0 )− Lφ(t0, s0, w

I
0, w

C
0 )

− f(t0, σs0φs(t0, s0, w
I
0, w

C
0 ), Γ̄I(t0, s0, w

I
0, w

C
0 ), Γ̄C(t0, s0, w

I
0, w

C
0 ); v̂(t0, s0)) > ε.

By continuity, and by possibly reducing h and the open neighborhood of (t0, s0, w
I
0, w

C
0 ), we may

assume that it is also true inside the neighborhood U(t0, s0, w
I
0, w

C
0 ) of (t0, s0, w

I
0, w

C
0 ), while still

assuming that (t, s0, w
I
0, w

C
0 ) ∈ U(t0, s0, w

I
0, w

C
0 ) for any t ∈ [t0, t0 + h].

Next, define

Ih := 1
h
EQ
[∫ (t0+h)∧τ

t0∧τ
Ψ(t, St, $I,Q

t $C,Q
t )dt

]
,

where

Ψ(t, s, wI , wC) :=φt(t, s, wI , wC) + Lφ(t, s, wI , wC)
+ f(t, φ, σsφs(t, s, wI , wC), Γ̄I(t, s, wI , wC), Γ̄C(t, s, wI , wC); v̂(t, s)).

Since f is Lipschitz, we can show in a similar way as in Delong (2013) that for t0 ≤ t ≤ t0 +h it holds
that ∣∣∣Ψ(t, s, wI , wC)

∣∣∣ ≤ C(1 +
∣∣∣s2
∣∣∣),

EQ
[∣∣∣ ¯̄Vt∧τ ∣∣∣ 1l{τ>t}] ≤ Ch 1

2 , (25)

EQ
[∫ (t0+h)∧τ

t0∧τ

∣∣∣ ¯̄Zr∣∣∣2 dr +
∑

j∈{I,C}

∫ (t0+h)∧τ

t0∧τ

∫
R

∣∣∣ ¯̄Zjr ∣∣∣2 νj(dρ)dr
]
≤ Ch

3
2 , (26)

Q[τ1 ≤ (t0 + h) ∧ τ ] ≤ Ch, (27)

where we have introduced another stopping time

τ1 := inf
{
t ≥ t0 : (t, St, $I,Q

t , $C,Q
t ) 6∈ U(t0, s0, w

I
0, w

C
0 )
}
.

9



From q1 := Q[τ > t0] > 0, inequality (27) and the fact that the default intensities hQI , h
Q
C are

constant, so that Q[τ ∈ (t0, t0 + h)] ≤ Ch, it also follows that

Q
[
{τ1 > (t0 + h) ∧ τ} ∩ {τ ≥ t0 + h}

]
≥ 1−Q[τ ≤ t0]−Q[τ1 ≤ (t0 + h) ∧ τ ]−Q[τ ∈ (t0, t0 + h)] ≥ q1 − Ch,

and similarly that

Q
[
{τ1 ≤ (t0 + h) ∧ τ} ∪ {τ ∈ (t0, t0 + h)}

]
≤ Ch.

Here and throughout this proof, we will abuse notation and use C > 0 to denote a generic constant,
which may be different in each inequality below. It follows that

Ih = 1
h
EQ
[∫ (t0+h)∧τ

t0∧τ
Ψ(t, St, $I,Q

t , $C,Q
t )dt1l{τ1>(t0+h)∧τ}∩{τ 6∈(t0,t0+h)}

]
+ 1
h
EQ
[∫ (t0+h)∧τ

t0∧τ
Ψ(t, St, $I,Q

t , $C,Q
t )dt1l{τ1≤(t0+h)∧τ}∪{τ∈(t0,t0+h)}

]
≤ −εQ

[
{τ1 > (t0 + h) ∧ τ} ∩ {τ ≥ t0 + h}

]
+ 1
h

√
EQ
[∫ t0+h

t0
1dt1l{τ1≤(t0+h)∧τ}∪{τ∈(t0,t0+h)}

]
EQ
[∫ (t0+h)∧τ

t0∧τ
Ψ2(t, St, $I,Q

t , $C,Q
t )dt

]
≤ −εQ

[
{τ1 > (t0 + h) ∧ τ} ∩ {τ ≥ t0+}

]
+

√
hQ
[
{τ1 ≤ (t0 + h) ∧ τ} ∪ {τ ∈ (t0, t0 + h)}

]
h

√
EQ
[∫ (t0+h)∧τ

t0∧τ
Ψ2(t, St, $I,Q

t , $C,Q
t )dt

]

≤ −ε(q1 − Ch) + C
√
h

√√√√1 + EQ
[

sup
t∈[t0∧τ,(t0+h)∧τ ]

S4
t

]
.

This shows that for sufficiently small h > 0, we have that Ih ≤ − εq1
2 .

From the comparison Theorem A.3 in Bichuch et al. (2015) we get that ¯̄Vt0∧τ1l{τ>t0} ≥ 0. Using
this along with (24), we conclude that

ε

2 ≤
∣∣∣∣1h ¯̄Vt0∧τ1l{τ>t0} − Ih

∣∣∣∣
= 1
h

∣∣∣∣∣EQ
[∫ (t0+h)∧τ

t0∧τ
f(r, ¯̄Vr + φ, ¯̄Zr + σSrφs,

¯̄ZIr + Γ̄I , ¯̄ZCr + Γ̄C ; V̂r)− f(r, φ, σSrφs, Γ̄I , Γ̄C ; V̂r)dr
]∣∣∣∣∣

≤ C sup
r∈[t0,t0+h]

EQ
[∣∣∣ ¯̄Vr∧τ ∣∣∣ 1l{τ>r}]

+ C√
h

(√
EQ
[∫ (t0+h)∧τ

t0∧τ

∣∣∣ ¯̄Zr∣∣∣2 dr]+
∑

j∈{I,C}

√
EQ
[∫ (t0+h)∧τ

t0∧τ

∫
R

∣∣∣ ¯̄Zjr ∣∣∣2 νj(dρ)dr
])

≤ C(h
1
2 + h

1
4 ),

where the second inequality follows from the fact that the driver f of our BSDE is Lipschitz along
with the Hölder’s inequality (setting the exponent to 2), while the last inequality follows from the

10



estimates given by the inequalities (25) and (26). This yields a contradiction, as we let h↘ 0. Hence
φ does not violate the subsolution property.

In order to incorporate the jump condition (21) at the jump time τ , note that we can rewrite the
subsolution property for φ as

− φt(t0, s0, w
I
0, w

C
0 ) +

∑
j∈{I,C}

hQj φj(t0, s0, w
I
0, w

C
0 )− rDsφs −

1
2σ

2s2φss (28)

− f1(t0, φ, σs0φs(t0, s0, w
I
0, w

C
0 ), Γ̄I(t0, s0, w

I
0, w

C
0 ), Γ̄C(t0, s0, w

I
0, w

C
0 ); v̂(t0, s0)) ≤ 0,

where we set f1(t, v, z, zI , zC ; v̂(t, s)) := f(t, s, v, z, zI , zC , v̂(t, s)) + hQI z
I + hQCz

C . Under the no arbi-
trage conditions given by (18), it follows that f1 is an increasing function in both arguments zI and
zC . By continuity of v (see e.g. Lemma 4.1.1 of Delong (2013)), it follows that φ(τI , SτI , $

I,Q
τI− +

1, $C,Q
τI−)1l{τI<τC∧T} ≥ VτI1l{τI<τC∧T} = θI(V̂τI )1l{τI<τC∧T}, and similarly φ(τC , SτC , $

I,Q
τC−, $

C,Q
τC− +

1)1l{τC<τI∧T} ≥ VτC1l{τC<τI∧T} = θC(V̂τC )1l{τC<τI∧T}. Together with (28) it follows that

− φt(t0, s0, w
I
0, w

C
0 ) +

∑
j∈{I,C}

hQj φj(t0, s0, w
I
0, w

C
0 )− rDsφs −

1
2s

2σ2φss

− hQI (θI(v̂)− φ(t0, s0, w
I
0, w

C
0 ))− hQC(θC(v̂)− φ(t0, s0, w

I
0, w

C
0 ))

− f(t0, φ, σs0φs(t0, s0, w
I
0, w

C
0 ), θI(v̂)− φ(t0, s0, w

I
0, w

C
0 ), θC(v̂)− φ(t0, s0, w

I
0, w

C
0 ); v̂(t0, s0)) ≤ 0.

This shows that φ is a subsolution of the PDE (22) as claimed.
Finally, the uniqueness result, follows from the uniqueness of the solution to the BSDE, which in

turn follows from the comparison Theorem A.3 in Bichuch et al. (2015).

Remark 3.3. Since we are only concerned with Vt before any default occurs, there is no need to keep
track of the martingale terms $j,Q

t ’s. These are only needed to realize that a default has happened.
Otherwise, $j,Q

t = −hQj t. It then follows that v reduces to a function of only two variables, so that we
can simply define v̄(t, St) = Vt1l{τ>t}. In other words, v̄(t, s) = v(t, s,−hQI t,−h

Q
Ct). In this case, the

PDE (22)-(23) becomes

− v̄t + (hQI + hQC)v̄(t, s)− rDsv̄s −
1
2σ

2s2v̄ss (29)

− f(t, v̄, σsv̄s(t, s), θI(v̂(t, s))− v̄(t, s)θC(v̂(t, s))− v̄(t, s); v̂(t, s)) =
∑

j∈{I,C}
hQj θj(v̂(t, s)),

v̄(T, s) = Φ(s). (30)

Remark 3.4. Additionally, we will also employ the standard change of variables x = log s, so that
w̄(t, x) = v̄(t, ex) and ŵ(t, x) = v̂(t, ex). Note that this change of variables allows us to get rid of
boundary conditions at S = 0. Then, the PDE (29) together with the boundary condition (30) becomes

− w̄t −
(
rD −

σ2

2
)
w̄x −

1
2σ

2w̄xx +
(
hQI + hQC

)
w̄ (31)

− f
(
t, w̄, σw̄x(t, x), θI(ŵ(t, x))− w̄(t, x), θC(ŵ(t, x))− w̄(t, x); ŵ(t, x)

)
=

∑
j∈{I,C}

hQj θj
(
ŵ(t, x)

)
,

w̄(T, x) = Φ(ex). (32)
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Hence, we can express the whole pricing problem as a Cauchy problem for a two-dimensional system
of semilinear PDEs:

−w̄t + L1w̄ = f(t, w̄, σw̄x, θI(ŵ)− w̄, θC(ŵ)− w̄; ŵ)
−ŵt + L2ŵ = 0

w̄(T, x) = ŵ(T, x) = Φ(ex),

where the differential operators are defined by

L1 := −
(
rD −

σ2

2
)
∂x −

σ2

2 ∂xx +
(
hQI + hQC

)
· −

∑
j∈{I,C}

hQj θj(ŵ)

L2 := −
(
rD −

σ2

2
)
∂x −

σ2

2 ∂xx

It turns out that the PDE (31)-(32) (resp. (29)-(30)) not only has a unique viscosity solution,
but this solution is also a classical solution if we assume that Φ and Φ′ (where defined) have at most
polynomial growth, i.e., |Φ(s)| ≤ C(1 + sn), |Φ′(s)| ≤ C(1 + sn), s ∈ R>0 The classical argument of
Theorem 20.2.1 in Cannon (1984) assumes a bounded terminal condition, but we can employ a change
of variables and divide by (1 + s2n) to utilize their framework:

¯̄w(t, x) =
(
1 + e2nx)w̄(t, x), ˆ̂w(t, x) =

(
1 + e2nx)ŵ(t, x), Φ̄(x) =

(
1 + e2nx)Φ(ex). (33)

In this case, our PDE (29)-(30) becomes:

− ¯̄wt −
1
2σ

2 ¯̄wxx +
(

2nσ2 e
(2n−1)x

1 + e2nx
¯̄wx − rD ¯̄wx

)
(34)

+
(
hQI + hQC + 2nrD

e(2n−1)x

1 + e2nx + nσ2 e
(2n−2)x

1 + e2nx

(
(2n− 1)− 4n e2nx

1 + e2nx

))
¯̄w

− f
(
t, ¯̄w, σ ¯̄wx − 2nσ e

(2n−1)x

1 + e2nx
¯̄w, θI( ˆ̂w(t, x))− ¯̄w, θC( ˆ̂w(t, x))− ¯̄w; ˆ̂w(t, x)

)
=

∑
j∈{I,C}

hQj θj( ˆ̂w(t, x)),

¯̄w(T, x) = Φ̄(x). (35)

We can then prove the following

Proposition 3.5. Assume that Φ is piecewise continuously differentiable and Φ as well as Φ′ (where
defined) have at most polynomial growth, i.e., |Φ(s)| ≤ C(1 + sn), |Φ′(s)| ≤ C(1 + sn), s ∈ R>0. Then
the PDE (31) with terminal condition (32) has a classical solution.

Proof. Assume first that Φ is continuosly differentiable. Using the transformation (33) given above, it
is then suffices to prove that (34)-(35) has a classical solution. The above transformation guarantees
that both Φ̄ and Φ̄′ are bounded. Then the existence of a smooth (and bounded) solution to (34)-(35)
follows from Theorem 20.2.1 in Cannon (1984). In the case that Φ̄ is only piecewise smooth, the
original proof can be modified following a similar procedure to Jouini and Kallal (1995). Hence, using
the change of variables (33), we conclude that there exists a classical solution to the PDE (31) with
terminal condition (32).
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Combining Proposition 3.5 with the uniqueness result from Theorem 3.2 allows us to conclude that
there exists a unique classical solution to the PDE with polynomial growth. Moreover, the hedging
strategies can be easily found by an application of Theorem A.1. Using the relations in (13) we find
that on the set {t < τ}

ξt = Zt
σSt

= v̄S(t, St),

ξjt = −Z
j
t

P jt
= v̄(t, St)− θj(v̂(t, St))

e−(rD+hQj )(T−t)
, j ∈ {I, C}. (36)

where we have used that the bond price P jt = e(rD+hQj )t on τj > t, by virtue of (2) and the relations
between the measures P and Q given in (3).

4 Numerical Analysis
We perform a comparative statics analysis to analyze the dependence of XVA and portfolio replicating
strategies on funding rates, default intensities, and collateral levels. We consider the relative XVA,
i.e. express the adjustment as a percentage of the price V̂t of the claim, given by Vt−V̂t

V̂t
, where

Vt = V ±t depending on whether we are considering buyer’s or seller’s XVA. The claim is chosen to be a
European-style call option on the stock security, i.e. Φ(x) = (x−K)+. We consider one at-the-money
option, with S0 = K = 1 maturing at T = 1. In order to focus on the impact of funding costs (which
in practice is the most relevant) and separate it from additional contributions to the XVA coming
from asymmetries in collateral and repo rates, we set r+

r = r−r = 0.05, and r+
c = r−c = 0.01. As the

derivatives contract does not only specify the price of the option but also the levels of collateralization
of the deal, the no-arbitrage region appears as a (two-dimensional) band in XVA and α rather than
as a (one-dimensional) interval in XVA only.

We also use the following other benchmark parameters: σ = 0.2, r+
f = 0.05, r−f = 0.08, rD = 0.01,

rI = 0.03, rC = 0.04, hQI = 0.2, hQC = 0.15, LI = LC = 0.5, and α = 0.9. We compute the numerical
solution of the PDE using a finite difference Crank-Nicholson scheme.

The main finding of our analysis are discussed in the sequel:

Higher funding rates increase the width of the no-arbitrage band. Figure 1 displays the no-
arbitrage band whose width is increasing in the funding rate r−f . As α gets higher, the band noticeably
shrinks reaching its minimum around α = 80% before widening again. Notice that buyer’s and seller’s
XVA do not have a symmetric behavior. This can be better understood by analyzing the dependence
of the band on the collateral level α in Figure 1. If α is not too high (α < 0.5), the widening of the
no-arbitrage band with respect to the funding rate r−f is due to decreasing buyer’s XVA. On the other
hand, if α is high the buyer’s XVA is insensitive to changes in r−f whereas the seller’s XVA increases
with r−f , contributing to widen the no-arbitrage band. This is further supported by the numerical
values reported in Table 1. When α < 0.5, the position in the funding account for the seller’s XVA is
long and the same regardless of the funding rate r−f . On the other hand, the size of the long position
for the buyer’s XVA increases in r−f . In presence of full collateralization, i.e. α = 1, the situation
reverses. The position in the funding account for the buyer’s XVA is short and stays constant with
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respect to r−f . Vice versa, for the seller’s XVA the size of the short position increases in size with
respect to r−f .

If α is high, the trader will have to post more collateral and consequently reduce the cash resources
for his replicating strategy. He will then have to borrow more from the funding desk, resulting in higher
funding costs. This drives up both the seller’s XVA and the number of shares of stocks and bonds
needed for the replication strategy.
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Figure 1: Top left: Buyer’s and seller’s XVA as a function of α for different r−f . The seller’s lies above
the buyer’s XVA and the same line style is used for both. Top right: Number of stock shares in the
replication strategy. Bottom left: Number of trader bond shares in the replication strategy. Bottom
right: Number of counterparty bond shares in the replication strategy. We plot the strategies for the
portfolio replicating the seller’s XVA.

Higher collateralization increases portfolio holdings. As the collateral level α increases, the
seller’s XVA increases. This happens because the value of the closeout position becomes higher as
it can be directly seen from Eq. (10) (notice that V̂ > 0 because we are considering a short call
option position). The trader would then need to construct a portfolio replicating a larger position,
hence he must take more risk. He achieves this by increasing the number of shares of stock and
bond underwritten by the counterparty. Moreover, higher collateralization levels reduce the size of
the downward negative jump to the closeout value occurring when the trader defaults. Consequently,
the trader needs to purchase a smaller amount of his bonds to replicate this position as α increases.
This behavior is confirmed from the plot in Figure 2.
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α r−f Seller’s XVA: funding account ($) Buyer’s XVA: funding account ($)
0 0.08 0.0039 0.0403
0 0.2 0.0039 0.0447

0.25 0.08 0.0249 0.0257
0.25 0.2 0.0249 0.0287
0.75 0.08 -0.0037 -0.0036
0.75 0.2 -0.0038 -0.0032
1 0.08 -0.0182 -0.018
1 0.2 -0.0193 -0.018

Table 1: The columns give the dollar position in the funding account corresponding to the replicating
strategies of seller’s XVA and buyer’s XVA.
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Figure 2: Top left: Buyer’s and seller’s XVA as a function of α for different hQC . Top right: Number of
stock shares in the replication strategy. Bottom left: Number of trader bond shares in the replication
strategy. Bottom right: Number of counterparty bond shares in the replication strategy.

The width of the no-arbitrage band is insensitive to counterparty’s default intensity.
Figure 2 shows that both seller’s and buyers’s XVA decrease, if the counterparty’s default intensity
hQC increases. When α is low, the two quantities drop by nearly the same amount and the width of
the no-arbitrage band is unaffected. As α gets larger, the seller’s XVA decreases faster relative to the
buyer’s XVA and the two quantities almost coincide when α = 1.
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r−f Seller’s XVA: funding ($) Buyer’s XVA: funding account ($)
0.08 -0.0124 -0.0123
0.1 -0.0125 -0.0122
0.15 -0.0127 -0.0122
0.2 -0.013 -0.0122

Table 2: The columns give the dollar position in the funding account corresponding to the replicating
strategies of seller’s XVA and buyer’s XVA. We set hQC = 0.15.

Consistently with Figure 2, Figure 3 shows that the seller’s XVA decreases when the default
intensity of the counterparty hQC increases. This can be understood as follows. Using the relations
between the default intensities under the probability measures P and Q given in Eq. (3), we can see
that increasing hQC is equivalent to increasing the bond rate rC while keeping the default probability
under P constant. Hence, the trader would earn higher premium from his long position in counterparty
bonds (see also bottom panels of Figure 3). Such a gain dominates over the funding costs incurred
when replicating a larger closeout position (Eq. (10) indicates that the closeout payment increases to
the risk-free payoff V̂ as hQC increases). Altogether, this means that the funding costs of the investor
would be reduced as hQC increases.

Hence, the dependence of XVA on counterparty’s default intensity contrasts with its sensitivity
to collateral levels numerically illustrated in Figure 1. This is because higher default risk of the
counterparty also means higher return on the bond underwritten by the counterparty, whereas higher
α only means that a larger value of the closeout payment needs to be replicated.

5 Conclusions
We have developed a rigorous analysis of the semilinear PDE associated with the BSDE characterizing
the price process of a portfolio replicating a European option, when funding, collateral and closeout
costs are taken into account. We have shown the existence and uniqueness of a classical solution to
the PDE under mild assumptions on the coefficients. Using this result, we have conducted a thorough
numerical study analyzing the sensitivity of XVA and of the claim’s replication strategy to collateral
levels, default risk and rates asymmetries. Our findings support the introduction of centralized XVA
desks to manage and hedge all costs related to over-the-counter transactions. It shows that funding
costs originating from the different trading components cannot be easily separated and hence attributed
to different business units (CVA, DVA and FVA desks) because they are highly interdependent.

A PDEs and Replication Strategies
Recall the measurable function v̄ from Remark 3.3 that was defined by v̄(t, St) = Vt1l{τ>t}. The
following theorem shows how the function v̄ can be used to compute the hedging strategies. Noting
that the law of St is absolutely continuous, the proof of the theorem becomes analogous to the proof of
Theorem 4.1.4 in Delong (2013). Hence, we omit it here and only give the statement of the theorem.
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Figure 3: Top left: Seller’s XVA as a function of hQC for different α. Top right: Number of stock
shares in the replication strategy. Bottom left: Number of trader bond shares in the replication strat-
egy. Bottom right: Number of counterparty bond shares in the replication strategy. The replicating
portfolio refers to the seller’s XVA.

Theorem A.1. Consider the data (f, θτ (V̂ (τ, Sτ )), V̂ (T, ST )) for the BSDE given by (16). Addition-
ally, let the function v̄(t, St) = Vt1l{τ>t} be defined as in Remark 3.3. Then, on the set {t < τ} we
have that

Zt = σStv̄S(t, St),
Zjt = θj(V̂ (t, St))− v̄(t, St).
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