Concurrent Signal Assignments

Module 3
Concurrent Signal Assignment

- Signals that appear outside of a process
- Event-triggered, when an event (change in value) occurs on one of the signals in the expression
- Three types
 - concurrent signal assignment
 - conditional signal assignment
 - selected signal assignment
Concurrent Signal Assignment (cont’d)

ARCHITECTURE example OF full_adder IS
BEGIN
 sum <= a XOR b XOR c;
 temp <= a AND b;
 cout <= temp AND c;
END example;

• Any time an event occurs on signals a, b, or c the concurrent signal assignments are re-executed.
• Signals in expression act like sensitivity list for process
• Equivalent process statement:

PROCESS (a, b, c)
BEGIN
 sum <= a XOR b XOR c;
END PROCESS;
Conditional Signal Assignment

- Selects different values for the target signal
 - priority associated with series of `WHEN .. ELSE`
- Similar to an IF statement
 - example multiplexer:

```vhdl
ARCHITECTURE example OF mux IS
BEGIN
  q <= i0 WHEN a = '0' AND b = '0' ELSE
       i1 WHEN a = '1' AND b = '0' ELSE
       i2 WHEN a = '0' AND b = '1' ELSE
       i3 WHEN a = '1' AND b = '1' ELSE 'X'; -- driven unknown
END example;
```
Complete VHDL

```vhdl
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity mux is
  Port ( a : in std_logic;
           b : in std_logic;
           i0 : in std_logic;
           i1 : in std_logic;
           i2 : in std_logic;
           i3 : in std_logic;
           q : out std_logic);
end mux;

architecture Behavioral of mux is
begin
  q <= i0 WHEN a = '0' AND b = '0' ELSE i1 WHEN a = '1' AND b = '0' ELSE i2 WHEN a = '0' AND b = '1' ELSE i3 WHEN a = '1' AND b = '1' ELSE 'X'; -- driven unknown
end Behavioral;
```
Synthesize

```vhdl
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity mux is
  Port ( a : in std_logic;
         b : in std_logic;
         i0 : in std_logic;
         i1 : in std_logic;
         i2 : in std_logic;
         i3 : in std_logic;
         q : out std_logic);
end mux;

architecture Behavioral of mux is
begin
  q <= i0 when a = '0' and b = '0' else
       i1 when a = '1' and b = '0' else
       i2 when a = '0' and b = '1' else
       i3 when a = '1' and b = '1' else
     'X';
end Behavioral;
```

Jim Duckworth, WPI

Concurrent Signal Assignments - Module 3
Synthesis Results – RTL Schematic
Synthesis Results – Technology Schematic
FPGA Editor
Selected Signal Assignment

- Selects different values for a target signal
 - no priority associated with input conditions
- Similar to a CASE statement

```
ARCHITECTURE example OF mux IS
    SIGNAL sel : std_logic_vector(1 DOWNTO 0);
BEGIN
    sel <= b & a;
    WITH sel SELECT
        q <= i0 WHEN "00",
            i1 WHEN "01",
            i2 WHEN "10",
            i3 WHEN "11",
            'X' WHEN OTHERS;
END example;
```
Selected Signal Assignment (cont’d)

• Another example
 – using enumerated type

```vhdl
ARCHITECTURE example OF alu IS
  TYPE op_code IS (and_op, or_op, add_op, sub_op);
  SIGNAL inst : op_code;
BEGIN
  inst <= -- inst gets some value;
  WITH inst SELECT
    result <= a AND b WHEN and_op,
             a OR b WHEN or_op,
             a + b WHEN add_op,
             a - b WHEN sub_op;
END example;
```
Selected Signal Assignment (cont’d)

• Another example

```
ARCHITECTURE example OF sel IS
BEGIN
    WITH x SELECT
        z <= a WHEN 1 | 2,
            b WHEN 3 TO 6,
            c WHEN OTHERS;
END example;
```
Selected Signal Assignment (cont’d)

- Equivalent Process Statement

```vhdl
ARCHITECTURE example OF sel IS
BEGIN

PROCESS(x, a, b, c)
BEGIN
    CASE x IS
        WHEN 1 | 2 =>
            z <= a;
        WHEN 3 TO 6 =>
            z <= b;
        WHEN OTHERS =>
            z <= c;
    END CASE;
END PROCESS;
END example;
```
Aggregates

- A set of comma separated elements enclosed in parenthesis
- Denotes the value of a composite type (array or record)
- Value specified by listing the value of each element

```vhdl
bus_a <= "10110111";

bus_b <= (OTHERS => '0');

bus_c <= (2 => '0', 6 => '0', OTHERS => '1');
```
Encoder - Xilinx Implementation

- Priority Encoder using conditional signal assignment
- Priority order determined by \texttt{WHEN .. ELSE} sequence
 - similar to if-then-else statement
 - (use selected signal assignment if no priority required)

```
ENTITY encoder IS     -- 4-line to 2-line priority encoder
  PORT(i0, i2, i2, i3 : IN std_logic;
       a : OUT std_logic_vector (1 DOWNTO 0));
END encoder;

ARCHITECTURE example OF encoder IS
BEGIN
  a <= "11" WHEN i3 = '1' ELSE
       "10" WHEN i2 = '1' ELSE
       "01" WHEN i1 = '1' ELSE
       "00";
END example;
```
Synthesis results
Synthesis results – RTL Schematic