Name:
 I.1-I.2
 II

 I.3-I.4
 III

 IV
 IV

MA 2051 B 2013 - Test 1

Instructions: Do your work on this paper. Put your name and section number above. Work neatly. Show your work. JUSTIFY YOUR ANSWERS.¹ Brains only — no calculators, books, scrap paper, etc.

12 pts each

I. If appropriate, find a general solution of the given differential equation or a solution of the given initial-value problem. If a general solution is not appropriate, find the best solution you can and explain. Bonus: +1 for each solution checked.

-lavy Nervian of 4.4.5/21(a) - b or 1.5/13(d)

1.
$$\frac{dy}{dt} + ay = b$$
, a and b constants. L, CC - find agn't od'n via CE, UDC

Howo via CE: y'n + ay=0, y=et, r=const.

 $\Rightarrow rest + aest = 0 \Rightarrow r=-a \Rightarrow y = et$

Part via UDC: $f = bt^0 \Rightarrow y = f_0$
 $y' + ay = b \Rightarrow f' + aff_0 = b \Rightarrow af_0 = b \Rightarrow f_0 = b = b$
 $\Rightarrow x = b \Rightarrow f' + aff_0 = b \Rightarrow f' + a(ce^{-at} + bf_0)' + a(ce^{-at} + bf_0)'$
 $\Rightarrow y = bf_0$

Check: $(ce^{-at} + bf_0)' + a(ce^{-at} + bf_0)' + a(ce^{-at} + bf_0)'$
 $\Rightarrow y = bf_0$
 $\Rightarrow x = bf_0$
 $\Rightarrow x$

SducOrder 1/6

1 Chack 2: IC:
$$u(d) = 2e^{0} = 2\sqrt{(2e^{-\frac{1}{2}})^3} + t^2 2e^{-\frac{1}{2}}$$

$$= \frac{1}{12e^{-\frac{1}{2}}} + \frac{1}{12e^{-\frac{1}{2}}} = 0\sqrt{\frac{1}{2}}$$

¹ "Justify your answers" requires providing enough justification to permit a Calc IV student to follow your work without having taken this course. You can assume that such a student could look up specialized terms and definitions as needed.

```
Name: Solutions
```

Solve Ovales 1/3 - Or 4.4.5/21(a)

3.
$$\frac{du}{dt} - u = 1 - t$$
 L, CC, RHS = $|-t| \Rightarrow ||_{\mathcal{S}} \text{ Nia CE, UIX}$

Homo: $||_{\mathcal{L}_{1}} - ||_{\mathcal{L}_{2}} = 0 \oplus ||_{\mathcal{L}_{1}} \oplus ||_{\mathcal{L}_{2}} = 0 \oplus ||_{\mathcal{L}_{2}} \oplus ||_{\mathcal{L}_{2}} = 0 \oplus ||_{\mathcal{L}_{2}} \oplus ||_{\mathcal{L}_{2}}$

4.4.4/6

4.
$$\frac{du}{dt} - u = 2e^t$$
, $\frac{1}{2}(0) = 4$ L, CC , $PHS = appl \Rightarrow ug$ via CE , UDC
 $\frac{1}{2}(0) = 1$ Log $PHS = appl \Rightarrow ug$ via $PHS = appl \Rightarrow ug$

2 Check: IC: Wo = 4e6 + 2.0.00 = 41=4v DE: (4e+2te+)'-(4e+2te+)
= 4e+2e+2te+2te+-1e+-2te+=2e+v

Name: Solutions

- 18 pts Compane 2,3/9
- II. The population of a certain group of cells increases from 10,000 to 22,000 in 21 days. Suppose this population P(t) satisfies a differential equation of the form $\frac{dP}{dt} = kP$.
 - 1. Find an expression for the numerical value of the birth rate k. (You need *not* evaluate the expression.)
 - 2. How many cells would you expect to reproduce during day 1?

Solve P' = kP, P(0) = 10,000? Use P(21) = 22,000to find k $OP = e^{rt} \Rightarrow re^{rt} = kP \Rightarrow r = k \Rightarrow P = Ce^{kt}$ (or use Solv) $P(0) = 10,000 \Rightarrow P(t) = 10,000e^{kt}$ (2) $P(21) = 10,000e^{21k} = 22,000 \Rightarrow e^{21k} = \frac{22}{10} = 2.2$ $\therefore 21k = \ln 2.2 \Rightarrow k = \frac{1}{21} \ln 2.2 | day = 1$ 2. Increase amount π rate x elapsed time x = 1 day x = kP(0) = 10,000 x = 10,

Other approaches to 1: estimate P' Domehau; then estimate k = P/P; e.g., $\frac{\Delta P}{\Delta t} = \frac{22,000-10,000}{21}$, $P = 10,000 \Rightarrow k \approx \frac{22,000-10,000}{21\cdot10,000} = \frac{11}{210}$ day-1

- 17 pts III. When Felix Baumgartner fell from his capsule toward the earth, he was subject to the forces of gravity and of air resistance. A simple differential equation modeling his velocity v(t) is $\frac{dv}{dt} + \frac{k}{m}v = -g$. (Notation: $g = 9.8 \text{ m/sec}^2$, m mass, k constant for air resistance; positive velocities are upward.)
 - 1. Find the steady-state (constant) solution $v_{\rm ter}$, the so-called terminal velocity. Is $v_{\rm ter}$ positive or negative? Is its sign reasonable physically?
 - 2. Use a solution formula to show that $\lim_{t\to\infty} v(t) = v_{\text{ter}}$, regardless of the value of v(0). (Hint: you can use the result of problem I.1.) Is that mathematical result good news or bad news for Felix?

I. When = const. \Rightarrow Major + $\frac{1}{2}$ when = -3 \Rightarrow Nater = $\frac{1}{2}$ Nature = -3 \Rightarrow Nature = -3 \Rightarrow Nature = -3 \Rightarrow Nature of Check Oto: (- $\frac{3}{2}$ Natur

Name: Solutions

IV. Recall that the temperature T(t) of an unheated house can be modeled by $\frac{dT}{dt} = -\frac{Ak}{cm} (T-T_{\rm out})$. House 1 has $+Ak/cm = 0.01~{\rm min^{-1}}$. House 2 has $+Ak/cm = 0.02~{\rm min^{-1}}$. Suppose that the outside temperature is $T_{\rm out} = 5^{\circ}$ C and that both houses start at $T(0) = 25^{\circ}$ C.

Which house's temperature drops faster initially, House 1 or House 2? Which house would you prefer to be in?

House 1: $T_1' = -0.01(25-5) = -0.2$ °Clonin

" 2: $T_2' = -0.02(") = -0.4$ °Clonin

So House 2 temp. drops faster $T_2' < T_1'$ at t=0.

Would prefer House 1 - would stay wormer longer