For Test 3

· Know L{f(t)}= for f(t)e-st dt

- use defin to calculate d

· Be fluent w/table of transforms
"recognize "shapes", "styles"

· Fair questions

- L2f3 - table or defin

- L"{F}-"

- Solve IVP

Solve IVP

- Solve IVT

- Given F(s), what behavior expected

in f(t) = Liff(s); ? (Exponential

F(s-a), = arowth/decay; ascillations; on-off
give numerical values of rate, freq.,...)

Typo - 10.6/11 Solution NOT -2 g(t) = -2[1-U(t-4)] + 4[U(t-4)-U(t-8)] = -2 + 6U(t-4) - 4U(t-8)

. 8 func.

- PFs us. Comp. Squ.

· Write out !

10-6/11: g(x) = -2[1-u(x-4)] + 4[u(x-4)-u(x-8)]

+ O. [4/4-8]]

 $\begin{aligned}
& \begin{cases} 2 \\ 3 \\ 4 \end{cases} = \begin{cases} 2 \\ 2 \\ 4 \end{cases} + 2 \begin{cases} 2 \\ 2 \\ 4 \end{cases} + 2 \begin{cases} 2 \end{cases} + 2 \begin{cases} 2 \\ 2 \end{cases} + 2 \end{cases} + 2 \begin{cases} 2 \\ 2 \end{cases} + 2 \end{cases} + 2 \begin{cases} 2 \\ 2 \end{cases} + 2 \end{cases} + 2 \begin{cases} 2 \\ 2 \end{cases} + 2 \end{cases} + 2 \begin{cases} 2 \\ 2 \end{cases} + 2 \end{cases} + 2 \begin{cases} 2 \end{cases} + 2 \end{cases} + 2 \begin{cases} 2 \end{cases} + 2 \end{cases} + 2 \end{cases} + 2 \begin{cases} 2 \end{cases} + 2 \end{cases}$

[Use f(t-4)=t2 to find f(u)= ...

 $f(t-4)=t^2 \Rightarrow f(u)=(u+4)^2$ $u=t-4 \Rightarrow t=u+4$

2 {f(w)} = 2 { u2+8u+16} = 33+8 = 16

 $\mathcal{L}\{g\} = \frac{-4}{5^3} + 2F(s)e^{-45} \qquad F(s)$ $= \frac{-4}{5^3} + 2\left(\frac{2}{5^3} + \frac{8}{5^2} + \frac{16}{5}\right)e^{-45}$

$$|0.6|(1) \quad y' + 2y = g(t), \quad y(0) = 5$$

$$|7(s) = \lambda \{y\} = 39 - y(0) + 2y = G(5)$$

$$|(s+2) = 5 + G(5)$$

$$|7 = \frac{5}{5+2} + \frac{1}{5+2} \left[-\frac{4}{5^3} + \frac{84}{5^3} + \frac{16}{5^2} + \frac{32}{5} \right]^{-4s}$$

$$|7 = \frac{5}{5+2} + \frac{1}{5+2} \left[-\frac{4}{5^3} + \frac{84}{5^3} + \frac{16}{5^2} + \frac{32}{5} \right]^{-4s}$$

$$|7 = \frac{5}{5+2} + \frac{1}{5+2} \left[-\frac{4}{5^3} + \frac{84}{5^3} + \frac{16}{5^2} + \frac{32}{5} \right]^{-4s}$$

105/5)
$$T' + 6T = \pi \delta(\pm -4)$$

 $T(0) = 17$
 $5 \angle \{T\} - T(0) + 6 \angle \{T\} \pi e^{-4s}$
 $Q(s+6) = 17 + \pi e^{-4s}$
 $Q = \frac{17}{s+6} + \pi \frac{e^{-4s}}{s+6}$

The forced model (5.13-5.14), page 210, of section 5.1 applies with the position h(t) of the upper end of the spring given by $h(t) = H\delta(t-a) - h(0)$ for some H. The model is

$$mx'' + kx = kH\delta(t-a), \quad x(0) = x_i, \quad x'(0) = v_i.$$

To grasp the physical meaning of an equation such as $mx'' + \cdots = kH\delta(t-a)$, informally integrate both sides. Then the relation is $mx' + \cdots = kH$. The quantity on the left, mx', is the change in the momentum of the mass, and kH represents that change. Since mx'' is a force (mass times acceleration), $kH\delta(t-a)$ is an *impulsive force* of brief duration and sufficient magnitude to produce a change in momentum of kH.

Closing a switch at time t=a in a series *RLC* circuit can cause a step function change in potential, E(t)=VU(t-a). The current model Li''+Ri'+i/C=E'(t) becomes

$$Li'' + Ri + \frac{1}{C}i = V\delta(t - a),$$

where the impulse $V\delta(t-a)$ is the consequence of a step increase V in potential at t=a. The time integral of $V\delta(t-a)$ is the magnitude V of the voltage change.

10.5.1 Exercises

EXERCISE GUIDE	
To gain experience	Try exercises
With transforms involving $\delta(i=a)$ Solving initial-value problems	1-3, 5-7, 9-13 2, 5-7, 6-12
Analyzing models involving impulses With $\delta(t-a)$ as the derivative of	4-6,9-12
$\mathcal{U}(t-a)$	7-8,11

- 1. Find $\mathcal{L}^{-1}\{1\}$.
- 2. Solve $y' + ky = 4\delta(t 6)$, y(0) = 2.
- 3. Invert the transform $\frac{s}{s-2}$.
- 4. Sketch a graph of the solution $P(t) = P_i e^{kt} Re^{k(t-a)}\mathcal{U}(t-a)$ of the population model $P' = kP R\delta(t-a)$, $P(0) = P_i$, considered in example 29. Explain the significance of the jumps in the graph.
- 5. Consider the heat-loss model $T' + (Ak/cm)T = b\delta(t-a)$, T(0) = 0. Solve this initial-value problem. Use your so-

lution to explain the significance of the parameter b. Of what physical situation might this initial-value problem be a model?

6. Solve the initial-value problem

$$mx''+kx=kH\delta(t-a),\quad x(0)=x_i,\quad x'(0)=v_i,$$

developed in example 30. It models a spring-mass system in which the upper end of the spring is jerked suddenly. Consider $x_i = v_i = 0$. Use your solution to explain the significance of the parameter H.

Find the current in across the three cir E = V at time t = 0 conditions and neg

Approximate the u

$$U_h(t-a) = \begin{cases} 0, \\ (t-1), \end{cases}$$

Sketch a graph of l sketch its graph. F defined? What con does this approxim

Consider the linea impulsive forcing

$$L\theta'' + g\theta =$$

- (a) Solve this pro tion you obtai
- (b) Use the solution inficance of the
- (c) If a pendulur θ_i and left to Choose b so t amplitude θ_i f

0.6 **■ CHAF**

In exercises 1-2, use the definition of Laplace transform to find the transform of the given function. Sketch the graph of each function before you attempt to find its transform.

1.
$$g(t) = \begin{cases} mt, & 0 \le t \le b \\ 0, & b < t < \infty \end{cases}$$

2.
$$g(t) = \begin{cases} 0, & 0 \le t \le 2\\ t - 2, & 2 \le t \le 4\\ 6, & 4 < t < \infty \end{cases}$$

In exercises 3–10, find the indicated transform; a and ω are constants. Confirm each result with DELAB.

- 3. $\mathcal{L}\{\cos 2t \sin 4t\}$
- 4. $\mathcal{L}\left\{\cos^2 3t\right\}$
- 5. $\mathcal{L}\left\{e^{-4t}\cos 2t\sin 4t\right\}$
- 6. $\mathcal{L}\left\{e^{-2t}\cos^2 3t\right\}$
- 7. $\mathcal{L}\{t(1-t)\}$
- 8. $\mathcal{L}\left\{e^{at}\cos\omega t\right\}$
- 9. $\mathcal{L}\left\{t\cos\omega t\right\}$
- 10. $\mathcal{L}\{\sin \omega t + \omega t \cos \omega t\}$

In exercises 11–12,

- (i) Graph the forcing term and write it in terms of the unit step function \mathcal{U} .
- (ii) Solve the initial-value problem, using Laplace transforms.
- (iii) Give the interval(s) within which the highest derivative of the solution appearing in the equation is continuous.
- (iv) Verify that your solution satisfies the differential equation within each interval of continuity.
- (v) As appropriate, confirm each transform and solution result with DELAB.

1.
$$y' + 2y = g(t), y(0) = 5,$$

$$g(t) = \begin{cases} -2! & 0 \le t < 4 \\ 4, & 4 \le t < 8 \\ 0, & 8 \le t < \infty \end{cases}$$

$$u(t-4) - u(t-8)$$

12.
$$y'' - 9y = g(t), y(0) = 4, y'(0) = 0$$

$$g(t) = \begin{cases} 0, & 0 \le t < 2 \\ 2, & 2 \le t < \infty \end{cases}$$

13. Assuming that it exists, find the Laplace transform of the solution of x' + x = g(t), x(0) = -3, where g(t) is the isolated pulse and cosine wave of exercise 7, page 555.

$$g(t) = \begin{cases} 1, & 0 \le t \le 2\pi \\ \cos t, & 2\pi \le t \le 7\pi/2 \\ 0, & 7\pi/2 < t < \infty \end{cases}$$

Work directly from the differential equation.

14. Draw a graph like that of figure 10.10, page 547, illustrating the "turn-on" property of the unit step function product $f(t-a)\mathcal{U}(t-a)t-a$ for the function appearing in example 24, page 549,

$$g(t) = \begin{cases} 0, & 0 \le t \le 2\\ \sin t, & 2 < t < \infty \end{cases}$$

In exercises 15–24, predict the general behavior of the function of t whose transform is given, then find the function and compare it with your prediction. Comment on differences. As appropriate, confirm each result with DELAB.

15.
$$\frac{4}{s^2 + 5s + 6}$$

$$16. \ \frac{4e^{-2s}}{s^2 + 5s + 6}$$

17.
$$\frac{2s}{s^2-4}$$

18.
$$\frac{2s}{s^2+4}$$

19.
$$\frac{2se^{-5s}}{s^2+4}$$

20.
$$\frac{s-1}{(s+1)(s^2-4)}$$

21.
$$\frac{4}{s^2 + 2s + 5}$$

22.
$$\frac{3}{s^3 + 3s^2 + 2s}$$

$$23. \ \frac{2s+6}{s^2+6s+18}$$

24.
$$\frac{3s}{s^2 - 3s + 10}$$

check your results.)

In exercises 25–28, the transform of the response of system is given. In each case,

- (i) Determine whether the response contains oscillatory terms. If so, give their frequencies.
- (ii) Determine whether the response includes exponential decay or growth. If so, give the factor in the exponential (or the corresponding time constant).
- (iii) Determine if the response contains any terms that switch on or off. If so, give the switching time(s).Do not invert the transforms. (As appropriate, use DELAB to

15.
$$\frac{s^2 + 1}{s^4 - 16}$$
16.
$$\frac{s^2 e^{-2s}}{(s^2 + 4)(s^2 + 4s)}$$
17.
$$\frac{2 - 4e^{-3s}}{(s - 1)^3}$$

Laplace transforms coefficient different roduce variables for $Y(s) = \mathcal{L}\{y(t)\}$, solve for Y(s), Z(s) exercises 29–36. Co

$$\begin{array}{ccc}
0, y' = & y + z, y \\
z' = -y + z, z
\end{array}$$

$$30. y' = z, y(0) = z' = y, z(0) =$$

31.
$$y' = -4y + 2z$$

 $z' = -3y + 3z$
32. $y' = -4z$, $y(0)$

33.
$$y' = y/2 + \sqrt{2}$$

 $z' = \sqrt{3} y/2 - \sqrt{2}$

z' = -4y, z(0)

34.
$$y' = z + 4 \cos z$$

 $z' = y$, $z(0) = 0$

35.
$$y' = y + 3z + z' = 3y + z - z'$$

36.
$$y' = y - z - 2$$

 $z' = 2y + 4z - 3$

10.7 = CH/