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with forcing terms f(x) from the same family.

The essential idea of undetermined coefficients is to assume a trial par-
ticular solution that involves the same sorts of functions as appear in the forc-
ing term. For example, if the forcing term is

sin 27,
then the trial particular solution is

Acos2mt 4+ Bsin2mt.

The coefficients A and B apé determined by substituti: = e trial solution into

the differential equation,
If part of a trial particular solution is @ solution of the homogeneous

the **nn, then the coefficient of that part will disappear when it is s

4.4 for lliu?““?ntial equation. Hence, its coefficient will remain un
In this situany, -~ng, this difficulty c;ﬁ be circumvented by /multiplying

efﬁcwnts for first-otder “Que-dependent variable. See the exam yles of section

trial solution of a/second-order equ... /

leave-: a solutlonﬁ, fthe homggeneous eQUALY- o e between urdetermine d co-

we simply multiply by the independent variable on. ~~uations Multiplying a
The rulés for efficiently guessing a form of the PartiCy. . o bl ot

ant, constructing a tridl solution) are summarized in laoay, tzaze

includes several natural extensions of the first-order guidelines of, . g., fore.

terms which are the product of a polynomial and an exponential.

TABLE 6.3 Particular solutions via undetermined coefficients for the constant- a Q 3
coefficient, second-order linear equation b,y" + b,y + byy = f(x) g

anx" + -+ ax +ay Ax" 4+ -4+ Ax + A
(@ x" + - 4 ax + ap)e?* (Apx" + -+ Ajx + Ag)e?”
(@, x" + -+ ajx + ag) cos px (A, x" + -+ A1x + Ap) cos px
+ (byx™ + -+ bix + by) sin px + (Bx" + - 4 Byx + By)sin px
ae? cos px + be?* sin px Ae? cos px + Be? sin px

If the assumed form of the particular solution solves the corresponding homogeneous equation,
multiply the assumed form by x. Repeat if necessary,

Lowercase letters a, a;, b, b; are constants given in the forcing function. The coefficients to be
determined are denoted by uppercase letters A, A;, B, B;.
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163 Exercises

7%

pexercises 1=, (1~10)

(i) Give an efficient form of a trial particular solution.
— (i) Find apértt%ular solution. O
~ (iii) Find a general solution. >

(iv) Compare your results with those of DELAB.
Ly"—9y =14 - 2x

Ly -9y =x"—1

— 5x

B.4x"(t) + 8Bx'(r) + 5x(t) = €' (sint/2 — )
9.4x"(t) + Bx'(t) + 5x(t) = 65int/2
10, 4x" () + 8x'(t) + Sx(t) =1 — 2

11, w”(;t) + 9w(x) = x sin3x + 2cos 4x
Row'(x) + 9w(x) = e¥*

Bow"(x) + 9w(x) = xe™™

4w (x) 4+ w(x) = x* =3

B.w’(x) + 9w(x) = 2 — cos 3x
6.22"(r) — 72'(r) + 32(t) = e¥/*sinmx
!7. 22"(r) — 72/ (£) + 3z(¢t) = 6™

N .
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19.27"(r) — 72'(t) + 3z(t) = e*2sinzwx + 6e* — 1
20. v" + 4y' 4 40y = xe > cos 6x

21, y" + 4y + 40y = xe ™

22. y"+ 4y + 40y = —sin6x

23 x"+x' —6x = =3t

24, x" + x' —6x =te ¥ —cos2t

25.9y" + 36y’ +4y = xe %/

26.4y"(x) + 8y'(x) + 5v(x) = cosx/2 + x3

27. w" + w' — 6w = e** — ¥

28. Verify that
xn‘l(r) — _g
is indeed a constant-coefficient, linear, second-order equa-
tion, as the text claims in example 36.

29, Verify that the solution
X (1) = —gt* 2+ Cit + Cy

of
.IH(I) =—g
obtained in example 36 is indeed a general solution.

30. Verify that the solution
Ye(x) = 4% 4 Cre™ 4 Coxe™

of
' + 4y + 4y = 8P
obtained in example 37 is indeed a general solution.

e
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31. Verify that the solution

33.

34,

ye(x) = e 4 Cre™™ + Coxe ™™

of

y' +4y +dy = 6xe™™
obtained in example 38 is indeed a general solution. If you
completed the previous exercise, can you use some of its

analysis here? Explain.

;:"Sﬁ}Consider the undamped, forced spring-mass system model; |

mx"(t) +kx(t) = Asinwt, x(0)=x, x'(0)=uv,

where A, w are fixed parameters. (Recall that m is mass, k
is the spring constant, and x;, v; are the initial position and
velocity.)

(a) Assume w # /k/m and solve the initial-value prob-

lem,
(b) Assume w = /k/m and solve the initial-value prob-
lem. . ESOHNA .

(c) How does the behavior of the solutions obtained in
parts (2) and (b) differ? How does the value of w affect
the solution procedure you use?

Solve the damped, forced spring-mass system model

(a)
mx" () + px'(t) + kx(r) = Asinowt,
x(o) =ik XJ(O) =,
where A, w are fixed parameters. (Recall that m is
mass, p is the damping or friction coefficient, k is the
spring constant, and x;, v; are the initial position and
velocity.)

(b

The previous exercise considered the undamped (p =
0) version of this model, and two cases arose, w =

Jk/m and o # +/k/m. Do such considerations

arise here? Does the solution of this problem remain
bounded for all time?

Example 39 obtained the particular solution
dm

}’p(-’:) = {3x3 - x2)e—2x + (4+—JTZ)2 COSTX

g —grt |
= —(m-i-)—zsmrrx

of
y' +4y + 4y = 18xe™¥ —sinmwx — 27

by decomposing the original problem into two subprob-
lems:

Problem 1: y” +4y' +4y = 18xe™% — 2¢7%,
Problem 2: y" +4y +4y = —sinmx.

W Analytic Tools for Two Dimensions
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Verify by direct substitution that y,, which is a sum of ,
particular solution of problem 1 and a particular solution of
problem 2, is indeed a solution of the full problem. Whicy
part of y, is a solution of problem 1? Of problem 27 Dq
these parts each yield the expected forcing terms when they
are substituted into the left side of the equation? Show how
your calculations support your answer to this last question,

Example 42 broke the problem of finding the form of 4

_ particular solution of

36.

y'—y'—6y = 3x sin2x —5cos 3x+x° (e + e ) fr —y

into a series of subproblems:

Problem 1: y" — y' — 6y = 3x sin2x
Problem 2: y" —y' — 6y = —5cos3x
Problem 3: y" —y' — 6y = x%e ¥
Problem 4: y" —-y’ — 6y = x%e*
Problem §: y" -y — 6y =7 — x*

Find a particular solution of the original differential equa-
tion by finding a particular solution of each of these sub-
problems and summing. You may use as much of the in-
formation in example 42 as you find useful.

In its search for a particular solution of

x"(t) = —g,

example 36 proposed three forms for a trial solution of
x" = —g. They are

xp1 (1) = Ag,
xp(t) = Ad,
xpj(t) = ADIZ.

Confirm the wisdom of finally using x,; by direct substitu-
tion of the first two trial solutions in x” () = —g. Explail
why these two trial solutions are unsatisfactory. Show thal
the third trial solution is not a solution of the homogeneous
equation x” = 0,

37. In its search for a particular solution of

Y+ 4y + 4y =87,

example 37 proposed three forms for a trial solution of
¥ 44y + 4y = Be™H:;

Yp1(x) = Age™,
Ypa(x) = Agxe ™™,
Ypa(x) = Agx?e™,

T

A

Confirm the wisdi
tion of y,1 and y
why these two t
that Xp3 is not a
iy Ly =

i, In its search for a
y

example 38 prop
y'+4y +4y =

Yp1!

Yp2l

Y3l

Confirm the wisd:
tution of the first
fire=2*, Explain v
factory., Show tha
of the homogeneo

%, Example 39 found
y.‘.ﬂ + 4y! +

Yp(x) = (3x

Find a generél sol
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