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{, Derive the phase angle-amplitude form of the solution of
the initial-value problem modeling each of the undamped
systems described here. Assume a general solution of the
form x,(t) = Asin(wt + ¢), and determine the constants
A and ¢ directly from the initial conditions.

«(a) A mass of 600 g is suspended from a spring that ex- ,,

observed to decrease from 10 cm to 5.€ cm. What is the
damping coefficient?

5. Example 27 shows that the general solution of the un-
damped model equation

mx"(t) +kx(£) =0

"_“tended 4 cm when a mass of 100 g was hung from it. “~

The 600-g mass is set in motion by releasing it from

rest 6 cm above its equilibrium position, Ao\ = ta

(b) The spring of part (a) is now set honzontally, attached
to a fixed anchor as in figure 6.8. A 2-kg air puck is at-
tached to the free end of the spring. (An air puck rides
on a cushion of air so that it can slide with essentially
no friction.) The puck is pushed 7 cm toward the fixed
anchor and released.

2, Consider the system described in part (a) of exercise 1.

(a) Suppose the mass is released from rest from an arbi-
trary position x;. How does the amplitude of the result-
ing motion depend upon x; ? How does the phase angle
depend upon x;? Do these relationships seem physi-
cally reasonable?

(b) Suppose the mass is started in motion from its equi-
librium position with a velocity v;. How does the am-
plitude of the resulting motion depend upon v;? How
does the phase angle depend upon v;7 Do these rela-
tionships seem physically reasonable?

/\The air-puck system described in part (b) of exercise 1 is
_get in motion from its equilibrium position with an un-
known initial velocity.
{a) The period of its oscillations is observed to be 6.39 s.
Can you determine the initial velocity of the puck?

(b) The maximum displacement of the puck is observed to
be 14.1 cm. Can you determine its initial velocity?

4, The system described in part (b) of exercise 1 is not truly
undamped, although that exercise suggested that you could
model it that way. In fact, during a period of 4 min, the
maximum displacement of the oscillations of the puck was

contains no exponential factors to cause either growth or
decay.

(a) Explain why no solution of the initial-value problem

mx"() +kx(t) =0
x(0)=x, x'(0) =y,
will exhibit growth or decay, regardless of the choice
of initial values x;, v;.

(b) Show that all solutions of this initial-value problem os-
cillate with period 2w /m/ k.

(¢) What happens when x; = v; = 0?

( 6\A 12-kg mass is suspended from a spring. Air resistance

~~and internal friction in the spring resist the motion of the
mass with a force whose magnitude is 0.02 times the ve-
locity of the mass. Find the range of spring-constant values
for which the mass will not oscillate.

/7)) A mass of 4 kg is suspended from a spring in a liquid that
~ offers a resistance force whose magnitude is e1ght times

the velocity of the mass.

(a) Does decreasing the magnitude of the spring constant
cause the mass to oscillate slower or faster?

(b) What range of values of the spring constant will pre-
vent the mass from oscillating?

8. You are given the characteristic roots ry, r, of a model of
a spring-mass system. Give a step-by-step recipe (an al-
gorithm) for determining from r,, r; whether the system is
damped or undamped. If it is damped, determine whether
it is underdamped, critically damped, or overdamped.
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