MA 2051 Calculus Review Sampler

Questions like these arise throughout MA 2051. Your calculus skills must be sharp enough to answer them quickly and accurately.

- 1. Let $y(t) = 7 \cos 3\pi t$; t is time in seconds.
 - (a) Sketch a graph of y.
 - (b) What is the maximum value of y? At which time(s) is the maximum achieved?
 - (c) What is the period of y? How many times does y repeat itself each second?
 - (d) Calculate y''. Then show that y is a solution of the differential equation $y'' + 9\pi^2 y = 0$. Repeat the process to show that $Y(t) = A \cos 3\pi t$ solves the same DE for *any* value of the constant A.
 - (e) Answer the same questions for $z(t) = 7 \sin 3\pi t$.
- 2. Find the antiderivative. Differentiate to verify your result.

(a)
$$\int \frac{du}{u}$$

(b) $\int e^{u} du$
(c) $\int \frac{dx}{1+4x}$
(d) $\int e^{3t-1} dt$
(e) $\int te^{3t^{2}-1} dt$
(f) $\int \frac{dv}{(1-v)^{2}}$
(g) $\int \frac{dv}{g+kv/m}$, where g, k, m are constants

- 3. Solve for C: $e^{kt+C_1} = Ce^{kt}$.
- 4. Solve for y: $\ln |y| = kt + C$.
- 5. Solve for v: $\ln |g + kv/m| = kt/m + C$.
- 6. Find value(s) of the constant r that make e^{rt} a solution of y'' + y' 2y = 0.