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A space elevator is a tall tower rising from a point on the Earth’s equator to a height well above a
geostationary orbit, where it terminates in a counterweight. Although the concept is more than a
century old, it was only with the discovery of carbon nanotubes that it began to receive serious
scientific attention. NASA commissioned a study of the space elevator in the late 1990s that
examined the feasibility of such a structure and explored many of its applications. I explain the basic
mechanical principles underlying the construction of a space elevator and discuss several of its
applications: the transport of payload into space and the launching of spacecraft on voyages to other
planets. © 2007 American Association of Physics Teachers.
�DOI: 10.1119/1.2404957�
I. INTRODUCTION

A space elevator is a tall tower rising from a point on the
Earth’s equator to a height well above a geostationary orbit,
where it terminates in a counterweight �see Fig. 1�a��. Al-
though the idea of such a structure is quite old, it is only
within the last decade or so that it has attracted serious sci-
entific attention. NASA commissioned some studies of the
elevator in the 1990s that concluded that it would be feasible
to build one and use it to transport payload cheaply into
space and also to launch spacecraft on voyages to other
planets.1 Partly as a result of this study, a private organiza-
tion called Liftport2 was formed in 2003 with the goal of
constructing a space elevator and enlisting the support of
universities, research labs, and businesses that might have an
interest in this venture. Liftport’s website features a timer
that counts down the seconds to the opening of its elevator
on 12 April 2018. Whether that happens or not, the space
elevator represents an application of classical mechanics to
an engineering project on a gargantuan scale that would have
an enormous impact on humanity if it is realized. As such, it
is well worth studying and thinking about for all the possi-
bilities it has to offer.

This article explains the basic mechanical principles un-
derlying the construction of the space elevator and discusses
some of its principal applications. It should be accessible to
anyone who has had a course in undergraduate mechanics
and could help give students in such a course a feeling for
some of the contemporary applications of mechanics.

Before discussing the physics of the space elevator, we
recall some of the more interesting facts of its history. The
earliest mention of anything like the elevator seems to have
been in the book of Genesis, which talks of an attempt by an
ancient civilization to build a tower to heaven �the “Tower of
Babel”� that came to naught because of a breakdown of com-
munication between the participants. In more recent times
the concept of the space elevator was first proposed by the
Russian physicist Konstantin Tsiolkovsky in 1895 and then
again by the Leningrad engineer, Yuri Artsutanov, in 1960.3

The concept was rediscovered by the American engineer, Jer-
ome Pearson,4 in 1975. In 1978 Arthur Clarke brought the
idea to the attention of the general public through his novel
Fountains of Paradise5 and at about the same time Charles
Sheffield, a physicist, wrote a novel6 centered on the same
concept. Despite this publicity, the idea of the elevator did

not really catch on among scientists because an analysis of
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its structure showed that no known material was strong
enough to build it.

This pessimism was largely neutralized by the discovery
of carbon nanotubes in 1991.7 Carbon nanotubes, which are
essentially rolled up sheets of graphite, have a tensile
strength greatly exceeding that of any other known material.
Their high tensile strength, combined with their relatively
low density, makes nanotubes an excellent construction ma-
terial for a space elevator and led to a resurgence of interest
in the concept.

II. HEIGHT OF A FREE STANDING TOWER AT
THE EARTH’S EQUATOR

What is the height of a free standing tower of constant
density and constant cross sectional area at the Earth’s equa-
tor? A free standing tower is one whose weight is counter-
balanced by the outward centrifugal force on it, so that it
exerts no force on the ground beneath it. A free standing
tower is in tension along its entire length, with the tension
adjusting itself so that each element of the tower is in equi-
librium under the action of the gravitational, centrifugal, and
tension forces acting on it. This point can be understood by
looking at Fig. 1�b�, which shows the four forces acting on a
small element of the tower: an upward force FU due to the
portion of tower above the element, a downward force FD
due to the portion of tower below the element, a downward
force W due to the weight of the element, and a �fictitious�
upward centrifugal force FC on the element due to its pres-
ence on the rotating Earth. The vector sum of these four
forces must vanish if the element is in equilibrium.

For an element at geostationary height �that is, at a dis-
tance from the Earth’s center equal to the radius of geosta-
tionary orbit� the weight and centrifugal forces are equal
�W=FC�, and therefore the tension forces at the two ends
must also be equal �FU=FD� for equilibrium. For an element
below geostationary height, the weight force W exceeds the
centrifugal force FC and one must have FU�FD for equilib-
rium. These two preceding statements imply that the tension
in the tower increases with height from ground level to geo-
stationary height. In contrast, for an element above the geo-
stationary height, the centrifugal force FC exceeds the weight
W and hence FU�FD for equilibrium, implying that the ten-
sion in the tower decreases as a function of height past the
geostationary height. A free standing tower is one for which

the tension drops to zero at both ends, requiring no restraint
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at either end to keep the tower in place. The overall picture
of a free standing tower is thus of a structure in which the

Fig. 1. �a� A panoramic view of the space elevator, showing it rising from a
point on Earth’s equator to a height above a geostationary orbit, where it
terminates in a counterweight. The elevator cable, although shown as a line,
is actually a tower of constant cross section. The purpose of the counter-
weight, which is not strictly necessary, is to avoid having the tower extend
to a much greater height. The figure is not to scale. �b� An expanded view of
a small element of the elevator cable �or tower�, with the forces acting on it:
FU and FD are the upward and downward forces of tension due to the rest of
the cable, W is the weight of the element, and FC is the outward centrifugal
force on the element. The �vertical� length of the element is dr and its lower
end is at a distance r from the Earth’s center.

Table I. Summary of the principal symbols used i
expressions that determine them.

Symbol Meanin

M Earth’s mass
R Earth’s radius
� Earth’s rotational angular veloc
Rg radius of geostationary orbit
G Newton’s constant of gravitatio
g= GM �R2 acceleration of gravity at Earth
� mass density of elevator cable
A cross sectional area of the tape

with position along the cable�
r distance of a point on the cable
As cross sectional area of cable at
Ag cross sectional area of cable at
H distance of the top of a free-sta

center
T stress �or force per unit area� in

it is kept constant throughout a
Lc=T /�g characteristic length of elevator
Ag /As taper ratio
h length of cable beyond geostati
mC mass of counterweight
mE mass of elevator tower or cable
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tension rises from zero at ground level to a maximum value
at geostationary height, and then decreases to zero again at
the upper end. With this qualitative picture in mind, we pro-
ceed to work out the quantitative variation of the tension in
the tower with height.

Let M, R, and � denote the mass, radius, and rotational
angular velocity of the Earth. The radius of geostationary
orbit is Rg= �GM /�2�1/3, where G is Newton’s constant of
gravitation. �See Table I for a glossary of the principal sym-
bols used in this article.� We analyze the forces in a free
standing tower of constant mass density � and uniform cross-
sectional area A. Consider a small element of the tower of
length dr whose lower end is a distance r from the Earth’s
center. The equilibrium of this element requires that the vec-
tor sum of the forces acting on it vanish or that FU+FC
−FD−W=0 �see Fig. 1�b��. We write FU−FD as AdT, where
T is the tensile stress �force per unit area� in the tower. We
also use the explicit expressions for W and FC to rewrite the
equilibrium condition as

AdT =
GM�Adr��

r2 − �Adr���2r . �1�

If we divide both sides by Adr, we can recast Eq. �1� as the
differential equation

dT

dr
= GM�� 1

r2 −
r

Rg
3� . �2�

Integrating Eq. �2� from r=R to r=Rg subject to the bound-
ary condition T�R�=0 gives the tensile stress at geostationary
height Rg as

T�Rg� = GM�� 1

R
−

3

2Rg
+

R2

2Rg
3� . �3�

text, together with their numerical values or the

Value

5.98�1024 kg
6370 km
7.27�10−5 s−1

42 300 km
6.67�10−11 Nm2/kg2
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Let H denote the distance of the top of the tower from the
Earth’s center. We can determine H by integrating Eq. �2�
from r=Rg to r=H subject to the boundary condition T�H�
=0, which expresses the fact that the tension drops to zero at
the upper end of the tower. In this way we find that

T�Rg� = GM�� 1

H
−

3

2Rg
+

H2

2Rg
3� . �4�

If we equate the right sides of Eqs. �3� and �4� and note that
H=R is a solution of the resulting cubic in H, we can reduce
the cubic to the quadratic equation

RH2 + R2H − 2Rg
3 = 0, �5�

whose only positive root is

H =
R

2
��1 + 8�Rg

R
	3

− 1� = 150 000 km.

The height of the top of the tower above the Earth’s surface
is therefore H−R=144 000 km �to three significant figures�.

The maximum tensile stress in the tower occurs at geosta-
tionary height and can be calculated from Eq. �3�. If we take
the tower to be made of steel for which �=7900 kg/m3, we
find that the maximum stress is 382 GPa �1 GPa
=109 N/m2�, which is over 60 times the tensile strength of
steel, showing that a steel tower is impossible. Other conven-
tional construction materials can be similarly ruled out. How
can we overcome this obstacle and build a space elevator?

III. THE TAPERED TOWER AND THE NEED FOR
CARBON NANOTUBES

A different design for the tower that avoids the excessive
stresses arising in the earlier design is a tapered tower with a
cross section that varies with height in such a way that the
tension �or force per unit area� in the tower remains uniform
along its entire length and at a value that can be safely sus-
tained by available construction materials. As we will see in
the following, this requirement implies that the tapered tower
must have a cross section that increases exponentially with
height up to the geostationary height and then decreases ex-
ponentially afterward, as shown crudely in Fig. 2�a� �where
the exponential variation is replaced by a linear one for ease
of representation�.

Consider a small element of the tapered tower of length dr
whose bottom end is at a distance r from the center of the
Earth. Figure 2�b� shows the forces acting on this element,
which is assumed to be below geostationary height and is
wider at its upper end than at its lower end. The equilibrium
of this element is again expressed by Eq. �1� but now with
FU−FD=TdA, where T is the constant stress in the tower and
dA is the difference in areas of the upper and lower faces of
the element. Equation �1� can thus be rewritten as

dA

A
=

�gR2

T
� 1

r2 −
r

Rg
3�dr , �6�

where g=GM /R2 is the acceleration of gravity at the Earth’s
surface. Integrating Eq. �6� yields the tower’s cross sectional

profile as
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A�r� = As exp ��gR2

T 
 1

R
+

R2

2Rg
3 −

1

r
−

r2

2Rg
3�� , �7�

where As is the value of A at r=R. Equation �7� shows that A
increases exponentially with height from ground level to
geostationary height and then decreases exponentially.

The distance H of the top of the tapered tower from the
Earth’s center can be defined by the requirement that the area
of the tower at its upper end have the same �small� value as
at its lower end, which is expressed by the condition A�H�
=As. Using this condition in Eq. �7� allows us to solve for the
height of the tapered tower as

H =
R

2
��1 + 8�Rg

R
	3

− 1� = 150 000 km,

which is identical to the height of a tower of constant cross
section that we found earlier. The main difference between
the constant cross section and tapered towers is that the large
stress and constant cross section of the former are exchanged
for the smaller stress and variable cross section of the latter.
This tradeoff turns out to be crucial for the realizability of
the elevator.

Let Ag�A�Rg� denote the cross sectional area of the ta-
pered tower at geostationary height. The taper ratio of the
tower is defined as Ag /As, that is, the ratio of its area at
geostationary height to that at ground level. We find from Eq.
�7� that

Ag

As
= exp � R

2Lc

� R

Rg
	3

− 3� R

Rg
	 + 2�� , �8�

where Lc=T /�g, known as the characteristic length, is a ma-
terial parameter that determines the taper ratio Ag /As of a
tower constructed out of that material. Table II uses Eq. �8�

Fig. 2. �a� A space elevator with a tapered cable, whose cross sectional area
increases from ground level to geostationary height and then decreases af-
terward. Both the increase and decrease in the area are exponential, but are
shown as linear in the figure for ease of representation. �b� An expanded
view of a small element of the cable below geostationary height, with the
four forces acting on it �which have the same meanings as in Fig. 1�b��. The
�vertical� length of the element is dr and its lower end is at a distance r from
the Earth’s center. The cross sectional areas of the upper and lower ends of
the element are A+dA and A, respectively.
to calculate the characteristic lengths and taper ratios of tow-
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ers made out of steel, Kevlar, and carbon nanotubes. �Kevlar
is a synthetic organic fiber made by DuPont company that is
widely used in construction.� It is seen that steel and Kevlar
yield very large taper ratios and are therefore unsuitable as
construction materials for a space elevator, but that carbon
nanotubes yield a modest taper ratio and are therefore an
excellent material for this purpose. The advantage of nano-
tubes derives from their combination of high tensile strength
and low density, which makes their characteristic length con-
siderably larger than that of other materials. Because the
characteristic length enters in the exponent in Eq. �8�, even a
modest increase in it gives rise to a dramatic decrease of the
taper ratio.

All current designs for a space elevator assume a tapered
tower �or cable, as the tower is often termed�, and also as-
sume that the tower is constructed out of carbon nanotubes.

IV. LENGTH AND MASS OF THE SPACE
ELEVATOR

What is the total length of the space elevator? And what is
the mass of material required for its construction? It may
seem that we have already answered the first question, be-
cause we found the total length of the elevator to be about
144 000 km. It turns out that we can considerably shorten the
length of the elevator by terminating it at its upper end
�which necessarily occurs above geostationary height� by a
counterweight of the appropriate mass. The action of the
counterweight can be understood as follows: the counter-
weight experiences a centrifugal force larger than the Earth’s
gravitational force and is maintained in its orbit by an extra
inward force exerted on it by the elevator cable; by Newton’s
third law, the counterweight exerts an equal and opposite
outward force on the cable that helps maintain the necessary
tension in it.

Let us calculate the mass mC of the counterweight if the
elevator tower is to extend a distance h above geostationary
height. The Earth’s gravitational pull on the counterweight
plus the inward force of the elevator cable on it must equal
the outward centrifugal force on it:

GMmC

�Rg + h�2 + A�Rg + h�T = mC�2�Rg + h� . �9�

If we substitute the value of A�Rg+h� from Eq. �7� into Eq.

Table II. Taper ratios for elevator cables consisting of three different mate-
rials, calculated from Eq. �8�. Note how an increase in the characteristic
length Lc leads to a faster than linear decrease in the taper ratio. The tensile
stresses are the maximum ones that can be borne by these materials; safe
practice generally requires that the materials be subjected to stresses no
more than half these values.

Material
Density �
�kg/m3�

Max tensile
stress T �GPa�

Lc=T /�g
�km� Taper ratio

Steel 7900 5.0 65 1.6�1033

Kevlar 1440 3.6 255 2.5�108

Carbon nanotubes 1300 130 10,200 1.6
�9� and solve for mC, we find that
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mC =

�AsLc exp � R2

2LcRg
3
2Rg

3 + R3

R
−

2Rg
3 + �Rg + h�3

Rg + h
��

R2�Rg + h�
Rg

3 �1 − � Rg

Rg + h
	3� .

�10�

Note that mC→� as h→0 and decreases with increasing h.
The total mass mE of the elevator tower is also of interest and
can be calculated as

mE = �
R

Rg+h

A�r� dr , �11�

where A�r� is given by Eq. �7�. The integral in Eq. �11� is
best performed numerically.

The masses mC and mE depend on the parameters �, T, As
and h, which capture all the material and design characteris-
tics of the elevator. We now determine the likely values of
these parameters and use them to estimate mC and mE.

The density of a pure carbon nanotube is 1300 kg/m3 and
its strength �the maximum tensile stress it can bear� is as-
sumed to be 300 GPa, although the NIAC Phase 1 report8

uses the more conservative value of 130 GPa in its calcula-
tions. Even this more conservative figure is unlikely to be
achieved for a long time. Recent work has focused on mak-
ing composites of nanotubes with other materials, and a
study9 suggests that the strength of such composites may be
limited to less than 100 GPa �with their density being
2000 kg/m3 or higher�. The achievable characteristic length
may therefore be lower than the figure quoted for pure nano-
tubes in Table II.

Our treatment of the elevator has said nothing about the
cross sectional shape of the elevator tower �or cable�. A natu-
ral choice would be to have a cable with a circular cross
section whose area varies with height in the manner appro-
priate to a tapered tower. A better choice is to have the cable
in the shape of a ribbon with one dimension much smaller
than the other, because this shape greatly reduces the risk of
damage due to meteorite impact. One early design proposed
a ribbon with an average thickness of one micron and a
width increasing from 5 cm at ground level to 11.5 cm at
geostationary height.8 We will not discuss the design of the
ribbon further except to note that its area at ground level As
is fixed by the requirement that it be able to support the
weight of the robotic lifter that climbs up it �either to trans-
port payload or to thicken the ribbon during the construction
process�. If the mass of the lifter is mL, its effective weight at
ground level is mL�g−�2R�, and this weight must be coun-
teracted by the upward force of AsT due to the tension in the
cable; equating these forces allows us to fix As for a given
lifter mass.

The total length �Rg+h� of the elevator cable is deter-
mined in part by the mass of the counterweight that can be
deployed and in part by the solar system destinations that are
hoped to be reached by spacecraft launched from the cable
�this point is discussed further in Sec. V�. A cable of about
100 000 km in length is generally considered a good choice.

Now that we have indicated some of the considerations
that influence the parameters �, T, As and h, we choose some
representative values for them and calculate the counter-
weight and cable masses from Eqs. �10� and �11�. We take

3 −7 2
�=1500 kg/m , T=100 GPa, As=1.5�10 m �sufficient
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to support a 1000 kg lifter�, and Rg+h=100 000 km. Sup-
pose we also incorporate a safety factor of 2 into the design,
that is, we ensure that the stress in the cable is only T
=50 GPa everywhere, which is half the maximum stress that
can be borne. We find from Eq. �8� that the taper ratio is
4.28, from Eq. �10� that the mass of the counterweight is
52.7·103 kg, and from Eq. �11� that the mass of the elevator
cable is 97.7·103 kg. Neither the mass of the counterweight
nor the cable is excessive. If a thicker or a shorter cable is
desired, one or both of the masses would be greater. More
extensive calculations of the cable mass for a range of values
of the elevator parameters can be found in Ref. 10.

V. APPLICATIONS: LAUNCHING PAYLOAD INTO
ORBIT AND SPACECRAFT TO THE OTHER
PLANETS

The space elevator affords an inexpensive and easy way to
get payload into space: we simply have to make it ride up the
elevator! One way of appreciating the advantage afforded by
the elevator is to compare the ideal energy cost of getting a
piece of payload into a geostationary orbit without and with
the elevator. Without the elevator, the ideal cost would be the
sum of the potential and kinetic energy costs in raising the
payload from the surface of the Earth to geostationary orbit.
If the payload is sent up on the elevator, the kinetic energy
cost is saved because the elevator automatically imparts the
necessary velocity to the payload. The reader can show that
the fractional savings in energy in getting to geostationary
orbit with the elevator is �R /Rg� / �2− �R /Rg��, which works
out to about 8%. This savings may not seem like much, but it
should be remembered that if payload is sent up on a space-
craft, a huge additional cost is incurred in sending the space-
craft up along with its load. Proposals have also been made
to use the tower as a linear induction propulsion system that
would recover energy from a descending capsule and reuse
the energy later to propel a capsule up the tower.11

A second major application of the elevator is to use the
tower’s rotational energy to launch spacecraft on orbits that
would allow them to reach other planets. An object released
from rest from a point sufficiently high up on the tower
would be able to escape the Earth’s gravity and sail away to
infinity. The critical height rc up the tower, measured from
the Earth’s center, at which the object would have to be
released for this escape to occur can be shown to be rc
= �2GM /�2�1/3=53 200 km. Building a tower of greater than
this height is necessary if we wish to use it to launch space-
craft on voyages to other planets.

What is the furthest distance from the Sun that a spacecraft
released from rest from the top of a tower of height h0 �
�rc� can reach? We assume that the tower’s motion takes
place in the orbital plane of the Earth �which is not true, but
will suffice for our simplified analysis�. After being released
from the tower, the spacecraft will move away from the
Earth and follow an elliptical orbit around the Sun. If the
craft is released when the tower’s velocity is parallel to the
Earth’s orbital velocity, then the craft’s velocity relative to
the Sun at the moment of release is as large as possible; in
this case the perihelion occurs at the release point and the
aphelion at a much greater distance from the Sun, allowing
voyages to the outer planets to be made. If the craft is re-
leased when the tower’s velocity is antiparallel to the Earth’s

orbital velocity, then the aphelion occurs at the release point
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and the perihelion at a much smaller distance from the Sun,
allowing voyages to the inner planets to be made. Let us now
examine both these possibilities quantitatively.

Let vE be the Earth’s orbital velocity and v1=�h0 be the
velocity of the spacecraft when it is released from the top of
the tower. Suppose first that the release occurs when vE and
v1 are parallel to each other so that the spacecraft’s speed
relative to the Sun at the moment of release is vE+v1. Let RE
be the Earth’s orbital radius and also the perihelion distance
of the craft’s elliptical orbit around the Sun �ignoring a small
correction due to the finite length of the tower�. Let r2 be the
aphelion distance of the craft from the Sun and v2 its aph-
elion velocity. Angular momentum and energy conservation
yield the pair of equations

m�vE + v1�RE = mv2r2 �12�

and

1

2
m�vE + v1�2 −

GMSm

RE
=

1

2
mv2

2 −
GMSm

r2
, �13�

where m and MS are the mass of the spacecraft and Sun,
respectively. �The term −GMm /h0, representing the potential
energy of the spacecraft in the Earth’s gravitational field,
could be added to the left side of Eq. �13�, but it is dwarfed
by the term −GMSm /RE and has therefore been omitted.� On
eliminating v2 between Eqs. �12� and �13�, we find that r2
satisfies the quadratic equation

��vE + �h0�2 −
2GMS

RE
�r2

2

+ 2GMSr2 − �vE + �h0�2RE
2 = 0, �14�

whose only relevant solution is

r2 =
�vE + �h0�2RE

2

2GMS − �vE + �h0�2RE
. �15�

The Earth’s orbital velocity is vE=30.9 km/s, its orbital ra-
dius is RE=1.5�1011 m, and the Sun’s mass is MS=2
�1030 kg. If we take the tower’s height above the Earth’s
center to be h0=107 000 km, then we find from Eq. �15� that
r2=7.95�1011 m=5.3 AU �astronomical units�, which is a
little larger than the mean orbital radius of Jupiter. A space-
craft released from the top of such an elevator would thus be
able to reach Jupiter.

For a trip to the inner planets, vE+�h0 in Eqs. �12�–�15�
should be replaced by vE−�h0, and r2 in Eq. �15� now de-
notes the perihelion �rather than the aphelion� distance of the
spacecraft from the Sun. If we use the same numbers as
before, we obtain r2=6.44�1010 m=0.43 AU, which is a
little larger than the mean orbital radius of Mercury.

Thus we see that an elevator cable of somewhat over
100 000 km in length should suffice as a sling to launch
spacecraft to Jupiter �at the outer end� and Mercury �at the
inner end�. Reaching Jupiter is critical, because we can take
advantage of Jupiter’s gravity assist to send spacecraft fur-
ther outward or even beyond the solar system.

The calculations of this section have been limited to in-
plane orbital transfers for simplicity, but out-of-plane trans-
fers and other orbital maneuvers would have to be taken into

account in planning a realistic mission.
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VI. CONCLUDING REMARKS

Our survey of the space elevator has tried to convey an
understanding of its basic physical features and some of its
applications. Much has obviously been left unsaid in this
brief account.

Any thorough discussion of the elevator would have to
address the many threats it would face and how they would
be met. Among these threats are vibrations in the cable in-
duced by geophysical and astronomical sources, lightning
strikes, meteors, space debris, wind, atomic oxygen, radia-
tion, and erosion of the cable by sulfuric acid droplets in the
upper atmosphere. Perhaps even more alarming is the possi-
bility that the cable might snap and wrap itself around the
Earth, unleashing all sorts of catastrophes in its wake. These
and other threats are considered in Ref. 8, which concludes
�a little too optimistically in my opinion� that none of them is
fatal and that they can all be circumvented by suitable coun-
termeasures. The main obstacles to the realization of the
space elevator are perceived by its champions to be more
technological �how rapidly will carbon nanotube technology
mature?� and economic �how costly and time consuming will
the project be and what sort of tradeoffs should be made?�
rather than environmental.

The two applications of the elevator that we have dis-
cussed are the transfer of payloads to space and the launch-
ing of spacecraft on voyages to other planets. A host of other
applications are envisioned, such as industrial manufacturing
in the microgravity of space, global monitoring of the Earth
and its environment, solar collectors for power generation
and transmission to the Earth, orbiting observatories and in-
terferometers, removal of space debris, studies of the danger
of space radiation, and the mining of near-Earth asteroids.
The construction of space elevators on the Moon and Mars
has also been mentioned in connection with the colonization
of these bodies. The material requirements for elevators on
other bodies may not always be as stringent as those for an
Earth based elevator and might be satisfied by more conven-

tional materials. A more detailed discussion of these issues
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can be found in Refs. 8–10. Only the future will tell when,
and in what form, the space elevator might eventually be
realized.
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