CAESAR: Context-Aware Event Stream Analytics in Real-time

Olga Poppe, Chuan Lei, Elke A. Rundensteiner, Dan Dougherty, Goutham Deva, Nicholas Fajardo, James Owens, Thomas Schweich, MaryAnn Van Valkenburg, Sarun Paisarnrisomsuk, Pitchaya Wiratchotisatian, George Gettel, Robert Hollinger, Devin Roberts, and Daniel Tocco

Supported by NSF grants IIS 1018443, IIS 343620, IIS 1560229, CRI 1305258.

Application Contexts

Financial Fraud
- Contexts: approved, suspicious, fraud

Cluster Monitoring
- Contexts: underloaded, overloaded, crashed

Health Care
- Contexts: normal, critical, emergency

Traffic Management
- Observations:
 - Event compositions signify application contexts
 - Most event queries are appropriate only in certain contexts. They can be safely suspended otherwise to focus on the current situation

Contexts

Accident
- Alarm triggering
- Traffic redirection
- Toll computation

Congestion
- Alarm triggering
- Traffic redirection
- Toll computation

Clear
- Alarm triggering
- Traffic redirection
- Toll computation

Context Window Push Down

Ideas:
- Event queries are grouped by context windows
- Each group shares one context window
- Context windows are pushed down to suspend irrelevant operators

Context Workload Sharing

Observation: Traffic is redirected during both accident and congestion contexts that may overlap

Requirements

CEP Systems (Esper)
- Expressive queries

CAESAR
- Contexts
- Context-driven optimizations

Business Models (UML)
- Expressive queries

Goal & Challenges

Goal: Leverage application contexts to speed up system responsiveness

Challenges:
- Rich context-aware semantics
- Human-readable specification
- Real-time system responsiveness

State-of-the-Art

CAESAR Model

Context-Driven Optimization Techniques

Ideas:
- Event queries are grouped by context windows
- Each group shares one context window
- Context windows are pushed down to suspend irrelevant operators

Context Window Push Down

1. Pattern: SEQ(NOT Position f, Position s)
2. Filter: f. id = s.id A. lane = "exit"
3. Pattern: SEQ(NOT Position f, Position s)
4. Projection: r.id, s.id, s.tlt, s.at, s.datetime, s.aid, s.lane, s.pos, s.seg, s.id
5. Pattern: NewCar c
6. Context window: congestion
7. Projection: c.id, c.aid, c.aid, c.datetime

Context Workload Sharing

Observation: Traffic is redirected during both accident and congestion contexts that may overlap

Requirements

CEP Systems (Esper)
- Expressive queries

CAESAR
- Expressive queries

Business Models (UML)
- Expressive queries

Experiments

Contributions

- First full-fledged context-aware CAESAR model visually captures the application contexts and allows to associate appropriate event queries with each context
- Context windows are driven by event queries and have unbounded duration
- Context-driven optimization techniques suspend irrelevant event queries and share event queries between overlapping contexts
- CAESAR runtime infrastructure that guarantees correct yet lightweight context management at runtime
- Experimental evaluation demonstrates 8-fold speed-up on average of the context-aware execution compared to the context-independent state-of-the-art approaches

Conclusion

CAESAR system enables human-readable context-aware event query specification and real-time system responsiveness to the current situation

References