Functional Analysis of Finger Contact Locations during Grasping

Matei Ciocarlie, Hao Dang and Peter Allen
Dept. of Computer Science
Columbia University

Jamie Lukos and Marco Santello
Dept. of Kinesiology
Arizona State University
Human grasping strategies

• The human hand: the most versatile end-effector known!
 ▪ wide range of configurations and subtle adjustments

• What about strategies during grasping?
 ▪ modulation of applied fingertip force or finger impedance
 [Santello and Soechting ’00, Reilmann et al. ’01, Gao et al. ’06, etc.]
 ▪ choice of contact locations
 [Cohen and Rosenbaum ’04, Lukos et al. ’07,’08, etc.]
 ▪ and a gradient of strategies in between!

• Choice of grasping strategy is complex
 ▪ depends on many factors (size, force, dexterity, etc.)
 ▪ and not well understood
Contact location vs. force modulation

- Problem: we can study one at a time, but usually not both!
 - most 6D force sensors restrict choice of contacts
- Our method: functional analysis of contact points
 - we don’t know what forces users generate
 - but we can compute what forces they can generate
 - study the interplay between contact locations and force
- Potential applications
 - tactile interfaces: also limit choice of contact location
 - force feedback: can we design better interfaces?
Functional analysis of contact locations

- Grasp Wrench Space (GWS) – unit sum magnitude
 - space of wrenches $w = \begin{bmatrix} f & \tau \end{bmatrix}^T \in \mathbb{R}^6$ that a grasp can apply
 - mirror image of the space of disturbances that can be resisted
 - built as a function of contact locations, surface normal, and friction cone approximation
Building the Grasp Wrench Space

- Start from individual contacts – assume sum = 1 (Unit)
 - Build the friction cone
 - Translate to the center of the object
- Convex hull of individual contact wrenches gives GWS
 - 6D – we can not visualize it directly
 - use 3D halfspace intersections

3D grasp force space
Grasp Wrench Space Example
Grasp Quality Metrics

- Q_w – amount of force needed to resist a **particular** disturbance
 - **smaller is better**
- Q_ε – highest Q_w across **all** possible disturbances
- Capture whether the choice of contact points makes it easier or harder to resist disturbances
Experimental setup

- allows choice of contact normal orientations
- samples 3D disturbance wrench space
- blocks / allows visual cues
Experimental setup

- allows choice of contact normal orientations
- samples 3D disturbance wrench space
- blocks / allows visual cues
Experimental setup

- 4 possible weight distributions:

- Task: lift object and minimize roll
 - enforce the use of tripod grasps

- One set consisted of 10 trials:
 - **blocked** – with the same weight distribution
 - **random** – with random weight distributions
 - 6 subjects, 4 sets of trials in each condition

- Track fingertips to obtain contact point locations
Results – Grasp quality analysis

Grasp Capture
Results – Grasp quality analysis

Grasp Capture

Grasp Reconstruction
Results – Grasp quality analysis

Grasp Capture → Grasp Reconstruction → Grasp Quality
Results – Grasp quality analysis

Grasp Capture \rightarrow\ Grasp Reconstruction \rightarrow\ Grasp Quality

Inside \textit{GraspIt}!
Results – modulation of contact location

- Standard deviation of contact point location over all 20 trials
 - modulation of contact points is present
 - but at different degrees across subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>AD</th>
<th>MA</th>
<th>JW</th>
<th>WH</th>
<th>QF</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. stdev. in x,y,z (mm)</td>
<td>14.96</td>
<td>7.87</td>
<td>15.98</td>
<td>19.00</td>
<td>11.00</td>
<td>7.53</td>
</tr>
</tbody>
</table>

Diameter: 68.8 mm
Results – adaptation to known disturbance

- Comparison: **random set** vs. **blocked set**

\[Q_w \] – amount of force needed to resist a particular disturbance **smaller is better**
Results – adaptation to known disturbance

- **Blocked** set comparison: first vs. rest of set

3 subjects (AD, MA and JW)

3 subjects (WH, QF and SI)
Discussion

- Is choice of contact points explained by easier resistance?
 - yes, but only with some subjects
- What strategies did the other subjects choose?
 - maybe also modulating contact force
 - we should measure both position and force
- Design tasks that better discriminate between strategies:
 - larger / heavier objects
 - behavioral consequences (e.g. avoid spill)
- Also measure task performance (i.e. object roll)
 - markers on object surface
Conclusions

- Tool for functional analysis of contact point locations
 - contact geometry and force generation capabilities
 - based on Grasp Wrench Space
- Enables wide range of experiments and applications
 - designed experiment to investigate 3D choice of contacts
- Users behavior was partially explained through analysis

Note: GWS computations performed using our *GraspIt!* simulator
- publicly available:
Thank you!