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Abstract — We consider the Poisson equation with Dirichlet boundary conditions on
a polygonal domain with one reentrant corner. We introduce new nonconforming finite
element discretizations based on mortar techniques and singular functions. The main
idea introduced in this paper is the replacement of cut-off functions by mortar element
techniques on the boundary of the domain. As advantages, the new discretizations
do not require costly numerical integrations and have smaller a priori error estimates
and condition numbers. Based on such an approach, we prove O(h) (O(h2)) optimal
accuracy error bounds for the discrete solution in the H1(Ω) (L2(Ω)) norm. Based
on such techniques, we also derive new extraction formulas for the stress intensive
factor. We establish O(h2) optimal accuracy for the computed stress intensive factor.
Numerical examples are presented to support our theory.
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1. Introduction

Consider the following elliptic variational problem: Find u∗ ∈ H1(Ω), such that

a(u∗, v) = f(v) ∀v ∈ H1
0 (Ω),

u∗ = u∗0 on ∂Ω,
(1)
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where

a(u∗, v) =

∫

Ω

∇u∗ · ∇v dx, f(v) =

∫

Ω

fv dx.

We assume that the function f ∈ L2(Ω) and the boundary data function u∗0 has an extension
in H2(Ω) which we also denote by u∗0. We let the domain Ω be an L-shaped domain in <2

with coordinate vertices V1 = {0, 0}, V2 = {1, 0}, V3 = {1, 1}, V4 = {−1, 1}, V5 = {−1,−1},
and V6 = {0,−1}. It is well known that the solution u∗ of (1) does not necessarily belong
to H2(Ω) due to the nonconvexity of the domain Ω at the corner V1 [18, 24, 25, 29]. As a
consequence, standard finite element discretizations do not give optimal accurate schemes
[10, 33]. Theoretical and numerical works on corner singularities are well known and several
different approaches were proposed, such as integral equations [19, 34], primal and dual
singular functions [8, 9, 11, 12, 14, 15, 18, 20, 22, 28, 33], local mesh refinements or graded
meshes [3, 30, 31], high-order polynomial approximations [2, 4, 33], and others; see also
references therein.

In this paper, we adopt the approach of singular functions to improve the accuracy
of the finite element method for problem (1). We note that the solution u∗ of (1) does not
necessarily belong to H2(Ω) even if f and u∗0 are very smooth. To see this, consider the primal

singular function defined as ψ+(r, θ) = r
2
3 sin(2

3
θ), where x = r cos(θ) and y = r sin(θ). The

function ψ+ is smooth everywhere in Ω except near the nonconvex corner V1. It is possible
to check that ψ+ ∈ H5/6−ε(Ω) if and only if ε is positive. In addition, ψ+ is harmonic, i.e.,
−4ψ+ ≡ 0 on Ω. We note that ψ+ vanishes on the intervals [V1, V2] and [V6, V1], and it is
smooth in the rest of the boundary ∂Ω. Introducing the C2 cut-off function ρ

ρ(x, y) =





1, 0 6 r 6 1

4
,
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4
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4
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we define the smoothed cut-off primal singular function s+ = ρψ+. The function s+ is an
example where the optimal regularity fails: s+ vanishes on ∂Ω, −∆s+ ∈ L2(Ω) while s+ does
not belong to H2(Ω). The function ψ+ is another example. Note also that ψ+−s+ ∈ H2(Ω).
In fact, all the functions that make the optimal regularity fail are of the form λs+ + H2(Ω)
and it is well known [18, 24, 25, 29] that the solution u∗ of (1) for a L-shaped domain with
u∗0 ≡ 0 has the following unique representation:

u∗ = vu∗ + λu∗s
+,

where vu∗ ∈ H2(Ω) and λu∗ ∈ <, and also with the following regularity estimate

‖vu∗‖H2(Ω) + |λu∗ | 6 C‖f‖L2(Ω),

where C here and below is a positive generic constant independent of the mesh size or the
functions under consideration. Taking into account that s+ − ψ+ ∈ H2(Ω) and that u∗0 has
an extension on H2(Ω), we also have the following unique representation:

u∗ = wu∗ + λu∗ψ
+,
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where wu∗ ∈ H2(Ω) and λu∗ ∈ <, and also with the following regularity estimates

‖wu∗‖H2(Ω) 6 C
(‖f + ∆u∗0‖L2(Ω) + ‖u∗0‖H2(Ω)

)
(2)

and

|λu∗| 6 C‖f + ∆u∗0‖L2(Ω). (3)

The major difference between the methods proposed in this paper and the other methods
in the literature is in how we treat the boundary conditions. Here we add the primal singular
function ψ+ as a basis function to the regular finite element space and enforce boundary
conditions through mortar techniques. One of the methods proposed here is a variation of
the method described in Chapter 8 of [33]. There, the smoothed cut-off primal singular
function s+ is added as a basis function to regular finite element spaces, and since the
function s+ belongs to H1

0 (Ω), the treatment of boundary conditions is standard. Here,
instead, we use mortar finite element techniques at the boundary of ∂Ω to enforce, in a weak
sense, the boundary condition. The mortar technique will also be used here to compute
the stress intensive factor. In another method proposed here, we use the dual singular
functions ψ− with the mortar treatment. Numerical experiments confirm that the use of
mortar techniques, as opposed to the use of the cut-off dual singular functions s− = ρψ−,
improves dramatically the accuracy of the computed stress intensive factor. Here, the dual
singular function ψ−(r, θ) = r−

2
3 sin(2

3
θ) and the smoothed cut-off dual singular function

s− = ρψ−. It will be recalled that mortar techniques [6, 5, 7, 35] have been widely used
in recent years for obtaining optimal discretization on nonoverlapping nonmatching grids.
Several applications have been reported, for example, fluid dynamics [1], sliding meshes [13],
overlapping nonmatching grids [16], preconditionings [17, 32], finite volume discretizations
[21, 26], plate problems [27], and others; see references therein. The proposed work is another
application of mortar techniques for obtaining accurate schemes for problems with known
singular behavior. We concentrate our discussion in this paper on the Poisson problem
on a L-shaped domain, however, it can be adapted to more general equations, boundary
conditions and domains (e.g., domains with cracks), provided that the singular function
representation and extraction formulas are available.

The motivations for the decision to use mortar techniques instead of cut-off functions
are described below. We note that ψ+ and s− can be approximated by the regular space of
linear piecewise continuous functions with an order of O(h2/3) [2]. Thus, when the grid size
h gets smaller, ψ+ and s− will become more linearly dependent with respect to the regular
finite element space. We note, however, that the function s+ has a much larger energy than
the function ψ+ since a large energy is created when cut-off the harmonic function ψ+ to
define s+ and this large energy is not related to the corner singularity. In case of using
the Cauchy-Schwarz inequality, this means that the angle between the function ψ+ and
the regular space of finite elements will be larger than the angle between s+ and the same
finite element spaces. As a consequence, the constants associated with the a priori discrete
error estimates will be larger for s+ as well as the conditioning of the matrix associated
with its discrete problem. Any error in numerical quadratures will have a strong effect on
the numerical results and this effect will get worse when the mesh gets refined. Hence, very
expensive numerical quadratures are needed. The chief advantage of using mortar techniques
is not only that the discrete matrix will be less ill-conditioned but also that several of the
numerical quadratures are avoided since ψ+ or ψ− are known harmonic functions, and,
therefore, numerical integrations can be avoided through integration by parts.
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We will prove later in this paper that the approximation of the discrete solution u to
u∗ is O(h) in H1(Ω) and O(h2) in the L2(Ω) norm. We note, however, that discrete λu

and wu obtained from the associated discrete problem will not end up on second-order
approximations to λu∗ and wu∗ . To obtain second-order schemes for λu∗ and wu∗ as well, we
introduce two different post-processing approaches to modify the discrete solution u. Such
post-processing approaches are based on the dual singular function ψ−. One approach is
based on mortar techniques and the other one is based on the smoothed cut-off dual singular
function s−. We will show the second-order approximation for both approaches, however,
the one used with the mortar technique is much more accurate.

The paper is organized as follows. In section 2, we introduce notations and mortar
techniques on ∂Ω. The new algorithms are described in section 3. Section 4 is devoted to
the mathematical analysis of the new algorithms. In Section 5, we discuss implementation
issues. We conclude the paper in Section 6 by providing some numerical experiments.

2. Notations

In this section, we introduce some notations and tools.

2.1. Triangulation

Let T h(Ω) be a regular finite element triangulation (composed of triangles) of Ω. We assume
the triangulation T h(Ω) to be regular in shape and quasi-uniform with the grid size of O(h).
Let V(Ω), also denoted by V , be the discrete space of piecewise continuous linear functions
on T h(Ω); note that we do not assume that the functions of V vanish on ∂Ω.

2.2. Mortar functions at the boundary

The boundary of our domain is given by ∂Ω =
⋃6

m=1 Dm, where the open straight seg-
ments Dm are given by the intervals D1 = (V1, V2), D2 = (V2, V3), D3 = (V3, V4), D4 =
(V4, V5), D5 = (V5, V6), and D6 = (V6, V1). For each interval Dm, the triangulation Th(Dm)
is inherited from the triangulation Th(Ω). Let us denote the space W (Dm) as the trace of V
to Dm; i.e.,

W (Dm) = {v ∈ C(Dm) : v = w|Dm
, w ∈ V}.

Here we denote C(Dm) as the space of the continuous function on Dm. The Lagrange
multiplier spaces, denoted by M(Dm), considered in this paper and also in the numerical
experiments, are going to be the dual biorthogonal functions introduced in [35]. The number
of degrees of freedom of the Lagrange multiplier spaces M(Dm) is the number of interior
nodes of Th(Dm). For each edge Dm, the mortar projection operator Πm : C(Dm) −→ W (Dm)
is defined by

v − Πmv ∈ C0(Dm),

∫

Dm

(v − Πmv)µmds = 0 ∀µm ∈ M(Dm). (4)

Here, C0(Dm) is the space of continuous functions which vanish at the two endpoints of Dm.
It can be shown [7, 35] that

‖Πmv‖
H

1/2
00 (Dm)

6 C‖v‖
H

1/2
00 (Dm)

∀v ∈ H
1/2
00 (Dm), (5)

‖v − Πmv‖
H

1/2
00 (Dm)

6 Ch‖v‖H3/2(Dm) ∀v ∈ H3/2(Dm), (6)
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and

inf
µm∈M(Dm)

‖v − µm‖(H1/2(Dm))′ 6 Ch‖v‖H1/2(Dm) ∀v ∈ H1/2(Dm). (7)

Note that above we have assumed continuity at the vertices Vk, k = 1, . . . , 6. We note
that the theory presented here also holds for the old mortars [7], where we assume continuity
at the vertices. The theory can also be easily extended to the new mortar generation [6]
where the values at the vertices Vk, k = 2, . . . , 5 are considered to be interior values. We
note, however, that the theory cannot be extended to the case where the function value at
V1 is treated as an interior values, thus, for the theory to work, continuity at V1 is required.

3. Singular function mortar finite element method

Once we have defined the mortar condition at the boundary, we are ready to define the new
finite element space. We define the discrete enhanced finite element space V+

0 as follows:

V+
0 =

{
v = w + λψ+ : w ∈ V , λ ∈ <, Πmv = 0, m = 1, · · · , 6

}
.

The functions of the space V+
0 vanish at the vertices Vk, k = 1, · · · , 6 and satisfy the zero

Dirichlet boundary condition in the weak discrete sense on the intervals Dm, m = 2, . . . , 5,
and satisfy the zero Dirichlet boundary condition in the strong sense on D1 and D6. It is
easy to see that the degrees of freedom of the space V+

0 are the scalar λ and nodal values of
w at the interior nodes of Th(Ω); the values of w on Dm are obtained via w = −λΠmψ+.

We next introduce the new finite element method using the finite–element space V+
0 .

Afterwards, we introduce two different methods to compute second-order accurate approxi-
mations for the stress intensive factor (SIF) λu∗ and for the smooth part wu∗ .

3.1. Finite element formulation

Let us take u0 ∈ V to be equal to Πmu∗0 on ∂Ω, and equal to zero at the interior nodes of
Th(Ω). We define the singular–function mortar finite element method as follows:

Find u = wu + λuψ
+ such that u− u0 ∈ V+

0 and

a(u, v) = f(v) ∀v ∈ V+
0 . (8)

We will prove later in this paper that problem (8) has a unique solution and the approx-
imation of the discrete solution u to u∗ is O(h) in H1(Ω) and O(h2) in the L2(Ω) norm.
To obtain the second-order approximation on L2(Ω), we assume that u∗0 ≡ Πmu∗0 on D1

and D6, i.e., that the function u∗0 restricted to D1 and D6 belongs to W (D1) and W (D6),
respectively. This technical assumption can be avoided if H2(Ω) extension of u∗0 is explicitly
available so that −∆u∗0 can be computed. Hence, we can reduce the original problem (1) to
the homogeneous Dirichlet boundary condition case. Even under the technical assumption
or the homogeneous Dirichlet boundary condition case, λu and wu obtained from (8) do not
end up on second-order approximations to λu∗ and wu∗ . Theoretically, we can only show that
|λu∗ −λu| 6 Ch1/3; see (27). Hence, to obtain second-order schemes for λu∗ and wu∗ as well,
we introduce a post-processing approach to modify u to ũ to obtain ũ = wũ + λũψ

+, where
now wũ, λũ, and ũ are second-order approximations for both λu∗ , wu∗ , and u∗, respectively.
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3.2. Post-processing with a cut-off function

Let f = −4u∗ and define f− = −4s−, where s− = ρψ−. We note that −∆ψ− ≡ 0 and ψ−

vanishes on the intervals [V1, V2] and [V6, V1], and it is possible to check that ψ− ∈ H1/3−ε

if and only if ε is positive. Applying the integration by parts to
∫
Ω

(−∆u∗s− + ∆s−u∗) and

using the asymptotic behavior of s+ and s− near the origin (see [29]), we obtain

λu∗ =
1

π




∫

Ω

(fs− − f−u∗) +

∫

∂Ω

s−∂nu
− − u∗0∂ns−


 ,

and taking into account that s− vanishes on ∂Ω, we have

λu∗ =
1

π




∫

Ω

(fs− − f−u∗)−
∫

∂Ω

u∗0∂ns
−


 . (9)

The reconstructed discrete stress intensity factor is defined as follows. We first solve (8)
to obtain u = wu + λuψ

+, and then substitute this u as u∗ into (9) to define the discrete
stress intensity factor as

λũ =
1

π




∫

Ω

(fs− − f−u)−
∫

∂Ω

u∗0∂ns
−


 . (10)

The reconstruction of wũ is obtained through

wũ = wu + (λu − λũ)Ihψ
+, (11)

and we let
ũ = wũ + λũψ

+. (12)

The operator Ih introduced above is the standard pointwise interpolator to V . We note
that ψ+ vanishes on the segments D1 and D6, therefore, ũ satisfies the mortar condition
on these segments. On the segments D2, D3, D4, and D5, ũ does not satisfy the mortar
condition, however, the function ψ+ is very smooth and, hence, pointwise interpolation will
not deteriorate the optimality of the approximation. Of course, if necessary, Ih can be
modified only on ∂Ω to satisfy all the mortar conditions without losing the optimality of the
approximation.

We next introduce another post-processing procedure to modify u to û = wû + λûψ
+

to obtain the optimal-order approximation for both λu∗ , wu∗ , and u∗. This approach gives
better numerical results, but it requires that the function u∗0 vanishes on the whole ∂Ω. We
note that this requirement is automatically satisfied if H2(Ω) extension of u∗0 is available since
we can reduce the original problem (1) to the homogeneous Dirichlet boundary condition
case.

3.3. Post-processing without a cut-off function

A in (3.2), we can use ψ− instead of s− and use −4ψ− ≡ 0 to obtain

λu∗ =
1

π




∫

Ω

fψ− −
∫

∂Ω

(u∗0∂nψ
− − ψ−∂nu

∗)


 . (13)
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Note that we do not know the value of ∂nu
∗ and, therefore, formula (13) is cannot be used to

obtain the discrete stress intensity factor. A discrete approximation for ∂nu
∗ can be obtained

via the saddle point formulation [5, 35] of (8). However, we cannot show theoretically that
such an approach can end up on a second-order scheme for λu∗ . Hence, we next introduce a
new method that does not require the knowledge or the approximation of the ∂nu∗.

We modify ψ− to ψ̂−, where ψ̂− vanishes on the whole ∂Ω, ψ̂− and ψ− have the same
singular behavior near the origin, and −∆ψ̂− ≡ 0. This is done as follows. We first solve
δψ− ∈ H1(Ω) so that

a(δψ−, v) = 0 ∀v ∈ H1
0 (Ω),

δψ− = ψ− on ∂Ω.
(14)

Then we define ψ̂− = ψ−−δψ−. Since the function ψ− vanishes on D1 and D6, and is smooth
on the remaining part of ∂Ω, the function ψ− has H2 extension to Ω. Hence, the solution of
(14) is of the form of δψ− = wδψ− + λδψ−ψ+, where wδψ− ∈ H2(Ω). In addition, the singular

behavior of ψ̂− near the origin is the same as that of ψ−, since we have ψ− = O
(
r−

2
3

)
and

δψ− = O
(
r

2
3

)
. We obtain

λu∗ =
1

π




∫

Ω

fψ̂− −
∫

∂Ω

u∗0∂nψ̂−


 .

If we assume that the boundary value u∗0 vanishes on ∂Ω, we have

λu∗ =
1

π

∫

Ω

fψ̂−. (15)

Note that we do not know ψ̂− and, therefore, a numerical approximation for ψ̂− has to be
calculated. We take δψ−0,h ∈ V to be equal to Πmψ− on Dm and to zero at the interior nodes

of Th(Ω). We solve δψ−h − δψ−h,0 ∈ V+
0 so that

a(δψ−h , v) = 0 ∀v ∈ V+
0 .

We define ψ̂−h = ψ− − δψ−h , and define the discrete stress intensity factor by

λû =
1

π

∫

Ω

fψ̂−h =
1

π




∫

Ω

fψ− − fδψ−h


 . (16)

Note that λû can be obtained without computing the discrete solution u and can be only
used if u∗0 vanishes on ∂Ω. The reconstruction for û can be defined as

û = wû + λûψ
+,

where

wû = wu + (λu − λû)Ihψ
+.

We next concentrate on the analysis of the algorithms.
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4. Analysis

In this section we analyze the proposed algorithms. We prove optimality accuracy of the dis-
crete solution u on the L2 and H1 norms. We also show that the two proposed discrete stress
intensive factor formulas, given by (10) and (16), are optimal (second) order approximations
for λu∗ .

4.1. Uniform ellipticity

Note that v ∈ V+
0 implies that v vanishes on D1 and D6. Therefore, using a standard

Poincaré inequality, we have:

Lemma 4.1. There exists a constant C that does not depend on h and v so that

‖v‖H1(Ω) 6 C|v|H1(Ω) ∀v ∈ V+
0 .

4.2. Energy discrete error

We next establish the optimal (first) order approximation of the discrete solution u on the
energy error.

Theorem 4.1. Let u∗0 ∈ H2(Ω) and f ∈ L2(Ω). Then the energy error is of order h,
i.e.,

‖u∗ − u‖H1(Ω) 6 Ch
(‖f + ∆u∗0‖L2(Ω) + ‖u∗0‖H2(Ω)

)
, (17)

where u∗ and u are the solutions of (1) and (8), respectively.

Proof. Note that the proposed discretization (8) is nonconformal since the space V+
0 is

not included in H1
0 (Ω); the functions in V+

0 vanish on Dm, m = 2, · · · , 5 only in a weak
sense. To establish the H1-discrete error estimate, we make use of the Cea’s lemma (the
second Strang lemma) for the nonconforming discretization [10] to obtain

‖u∗ − u‖H1(Ω) 6 inf
v∈u0+V+

0

‖u∗ − v‖H1(Ω) + sup
z∈V+

0

|a(u∗, z)− f(z)|
‖z‖H1(Ω)

= inf
v∈u0+V+

0

‖u∗ − v‖H1(Ω) + sup
z∈V+

0

| ∫
∂Ω

z∂nu∗ds|
‖z‖H1(Ω)

.

(18)

The first term of (18) is the best approximation error and the second term is the consistency
error. Both errors are estimated in the following two lemmas and are of O(h).

4.2.1. Best approximation error. We next establish that the best approximation
error on the energy norm is of the optimal (first) order.

Lemma 4.2. Let u∗0 ∈ H2(Ω) and f ∈ L2(Ω). Then the best approximation error is of
order h, i.e.

inf
v∈u0+V+

0

‖u∗ − v‖H1(Ω) 6 Ch
(‖f + ∆u∗0‖L2(Ω) + ‖u∗0‖H2(Ω)

)
.
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Proof. Let v̂ be defined as

v̂ = Ih(u
∗ − λu∗ψ

+) + λu∗ψ
+,

where Ih is the standard pointwise interpolator on V . Note that the interpolation is well-
defined, since the function wu∗ = u∗ − λu∗ψ

+ belongs to H2(Ω) and, therefore, wu∗ is a
continuous function. The function v̂ is not necessarily equal to Πmu∗0 on Dm. This means
that v̂ does not satisfy the boundary condition in the mortar sense. We therefore modify v̂
to v = v̂ +

∑6
m=1HmΠm(u∗0 − v̂), where the operator Hm denote the V-discrete harmonic

extension function with boundary values Πm(u∗0− v̂) given on Dm and zero on ∂Ω\Dm. Note
that by construction of v we have v ∈ u0 + V+

0 . Using the triangular inequalities we also
have

‖u∗ − v‖H1(Ω) 6 ‖wu∗ − Ihwu∗‖H1(Ω) + ‖
6∑

m=1

HmΠm(u∗0 − v̂)‖H1(Ω). (19)

For the first term of (19) we use a standard approximation result on pointwise interpolation
and (2) to obtain

‖wu∗ − Ihwu∗‖H1(Ω) 6 Ch‖wu∗‖H2(Ω) 6 Ch
(‖f + ∆u∗0‖L2(Ω) + ‖u∗0‖H2(Ω)

)
.

For the second term of (19) we use the properties of the discrete harmonic extensions and

H
1/2
00 -norm, and the stability and approximation results (5) and (6) to obtain
∥∥∥∥∥

6∑
m=1

HmΠm(u∗0 − v̂)

∥∥∥∥∥
H1(Ω)

6 C

6∑
m=1

‖HmΠm(u∗0 − v̂)‖H1(Ω) 6 C

6∑
m=1

‖Πm(u∗0 − v̂)‖
H

1/2
00 (Dm)

6 C

6∑
m=1

‖u∗0 − v̂‖
H

1/2
00 (Dm)

6 Ch‖u∗0‖H3/2(Dm) 6 Ch‖u∗0‖H2(Ω).

4.2.2. Consistency error. We next establish that the consistency error is of the optimal
(first) order.

Lemma 4.3. Let u∗0 ∈ H2(Ω) and f ∈ L2(Ω). Then the consistency error is of order h,
i.e.,

sup
z∈V+

0

∣∣∣∣∣∣

∫

∂Ω

∂nu
∗zds

∣∣∣∣∣∣
‖z‖H1(Ω)

6 Ch
(‖f + ∆u∗0‖L2(Ω) + ‖u∗0‖H2(Ω)

)
. (20)

Proof. Note that z ∈ V+
0 implies that z vanishes on D1 and D6. Therefore,

∫

∂Ω

z∂nu∗ds =
5∑

m=2

∫

Dm

z∂nu
∗ds.

From the definition of V+
0 , we have

∫
Dm

zµmds = 0 ∀µm ∈ M(Dm). Thus,

5∑
m=2

∫

Dm

z∂nu
∗ds =

5∑
m=2

∫

Dm

z(∂nu
∗ − µm)ds ∀µm ∈ M(Dm),
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and using the duality arguments, we obtain

5∑
m=2

∣∣∣∣
∫

Dm

z∂nu
∗ds

∣∣∣∣ 6 C

5∑
m=2

‖z‖H1/2(Dm) inf
µm∈M(Dm)

‖∂nu∗ − µm‖(H1/2)′ (Dm).

Let us denote Ω1/4 = Ω ∩ {r2 = x2 + y2 6 1/16}, and Ωc
1/4 = Ω\Ω1/4. Since ψ+ ∈

H2(Ωc
1/4), we have u∗ ∈ H2(Ωc

1/4), and, therefore, we can use a trace theorem to obtain

∂nu∗ ∈ H1/2(Dm), m = 2, · · · , 5. We then use the approximation property (7), the trace
result, and the regularity estimates (2) and (3) to obtain

inf
µm∈M(Dm)

‖∂nu∗ − µm‖(H1/2)′ (Dm) 6 Ch‖∂nu∗‖H1/2(Dm) 6 Ch‖u∗‖H2(Ωc
1/4

)

6 Ch(|λu∗| ‖ψ+‖H2(Ωc
1/4

) + ‖wu∗‖H2(Ωc
1/4

))

6 Ch
(‖f + ∆u∗0‖L2(Ω) + ‖u∗0‖H2(Ω)

)
.

We finally take into account that ‖z‖H1/2(Dm) 6 C‖z‖H1(Ω) to obtain (20).

4.3. Error in the L2-norm

We also obtain an optimal (second) order error estimate in the L2(Ω)-norm for the discrete
solution u of (8). Here, we assume that u∗0(Dm) ∈ W (Dm) or, equivalently, u∗0 = Πmu∗0 for
m = 1 and m = 6.

Theorem 4.2. Let u∗0 ∈ H2(Ω) and f ∈ L2(Ω). In addition, assume that u∗0 ∈ W (Dm)
for m = 1 and m = 6. Then the L2 discrete error is of order h2, i.e.,

‖u∗ − u‖L2(Ω) 6 Ch2
(‖f + ∆u∗0‖L2(Ω) + ‖u∗0‖H2(Ω)

)
. (21)

Proof. Let the functions φ∗g ∈ H1
0 (Ω) and φg ∈ V+

0 be weak solutions of a(w, φ∗g) =
(w, g) ∀w ∈ H1

0 (Ω) and a(w, φg) = (w, g) ∀w ∈ V+
0 , respectively. It is easy to see that

(u∗ − u, g) = a(u∗ − u, φ∗g − φg)−
(
a(u∗ − u, φ∗g)− (u∗ − u, g)

)

− (
a(u∗, φ∗g − φg)− (f, φ∗g − φg)

)
.

Using the Aubin-Nitche trick and integration by parts, we obtain

‖u∗ − u‖L2(Ω) 6 sup
g∈L2(Ω)

1

‖g‖L2(Ω)

{
c‖u∗ − u‖H1(Ω)‖φ∗g − φg‖H1(Ω)+

∣∣∣∣
∫

∂Ω

(u∗ − u)∂nφ∗g

∣∣∣∣ +

∣∣∣∣
∫

∂Ω

(φ∗g − φg)∂nu
∗
∣∣∣∣
}

.
(22)

From the symmetry of a(·, ·) and taking into account that g ∈ L2(Ω), we have φ∗g = wφ∗g +
λφ∗gψ

+, where
‖wφ∗g‖H2(Ω) + |λφ∗g | 6 C‖g‖L2(Ω),

and using Theorem 4.1 (with f replaced by g and u∗0 ≡ 0), we have

‖φ∗g − φg‖H1(Ω) 6 Ch‖g‖L2(Ω).
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Also, using (17), we obtain

‖u∗ − u‖H1(Ω)‖φ∗g − φg‖H1(Ω) 6 Ch2
(‖f + ∆u∗0‖L2(Ω) + ‖u∗0‖H2(Ω)

) ‖g‖L2(Ω).

We next obtain a bound for the second term of the right-hand side of (22). We now use
the assumption u∗0 = Πmu∗0 on D1 and D6 to have the second term of (22) bounded by

∣∣∣∣
∫

∂Ω

(u∗ − u)∂nφ
∗
g

∣∣∣∣ 6
5∑

m=2

∣∣∣∣
∫

Dm

(u∗ − u)∂nφ∗g

∣∣∣∣.

In addition, by using similar arguments as in the proof of Lemma 4.3 we also have

‖∂nφ
∗
g‖H1/2(Dm) 6 ‖∂nφ

∗
g‖H2(Ωc

1/4
) 6 C‖g‖L2(Ω).

Then by using ‖·‖
(H

1/2
00 )′(Dm)

6 ‖·‖(H1/2)′(Dm), (7), and taking into account that ψ∗g is smooth

on Dm, m = 2, · · · , 5, we obtain

5∑
m=2

∣∣∣∣
∫

Dm

(u∗ − u)∂nφ∗g

∣∣∣∣ 6
5∑

m=2

‖u∗ − u‖
H

1/2
00 (Dm)

inf
µm∈M(Dm)

‖∂nφ
∗
g − µm‖(H

1/2
00 )′(Dm)

6 Ch2
(‖f + ∆u∗0‖L2(Ω) + ‖u∗0‖H2(Ω)

) ‖g‖L2(Ω).

Using similar ideas, the third term of (22) can be bounded by

∣∣∣∣
∫

∂Ω

(φ∗g − φg)∂nu
∗
∣∣∣∣ 6 Ch2

(‖f + ∆u∗0‖L2(Ω) + ‖u∗0‖H2(Ω)

) ‖g‖L2(Ω).

4.4. Reconstructed stress intensive factor error

We next show that the reconstructed stress intensive factor errors |λu∗ − λũ| and |λu∗ − λû|
are of order h2. We also show that the L2-error of wu∗ − wũ and wu∗ − wû are of order h2.

Theorem 4.3. Let u∗0 ∈ H2(Ω) and f ∈ L2(Ω). In addition, assume that u∗0 ∈ W (Dm),
for m = 1 and m = 6. Then

h−2
(‖wu∗ − wũ‖L2(Ω) + |λu∗ − λũ|

)
+h−1|wu∗−wũ|H1(Ω) 6 C

(‖f + ∆u∗0‖L2(Ω) + ‖u∗0‖H2(Ω)

)
.

Proof. We subtract (10) from (9) to obtain

|λu∗ − λũ| =
∣∣∣∣∣∣
1

π

∫

Ω

f−(u− u∗)

∣∣∣∣∣∣
6 ‖f−‖L2(Ω)‖u− u∗‖L2(Ω).

From the smoothing properties of the cut-off function ρ we have that ‖f−‖L2(Ω) 6 C. Using
(21), we then obtain

|λu∗ − λũ| 6 Ch2
(‖f + ∆u∗0‖L2(Ω) + ‖u∗0‖H2(Ω)

)
.
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We next find a bound estimate for ‖u∗ − ũ‖L2(Ω). We first use a triangular inequality to
obtain

‖u∗ − ũ‖L2(Ω) 6 ‖u∗ − u‖L2(Ω) + ‖u− ũ‖L2(Ω). (23)

By using Theorem 4.2, we obtain a second-order error estimate for the first term of the
right-hand side of (23). We next show that the second term of the right-hand side of (23) is
O(h2). Using (11), (12), (8), and the Cauchy-Schwarz inequality, we have

‖u− ũ‖L2(Ω) 6 |λu − λũ| ‖ψ+ − Ihψ
+‖L2(Ω).

The next step is to get bounds for ‖ψ+ − Ihψ
+‖L2(Ω) and |λu − λũ|. We note that

‖ψ+ − Ihψ
+‖L2(Ω) 6 Ch5/3, (24)

despite the fact that the function ψ+ does not belong to H5/3(Ω). To see this, we first
consider elements τh ∈ Th(Ω) that do not touch the origin. Noting that ψ+ and Ihψ

+ are
harmonic functions in the interior of each τh, we can use the maximum principle for the
harmonic functions to have

‖ψ+ − Ihψ
+‖L∞(τh) 6 ‖ψ+ − Ihψ

+‖L∞(∂τh).

Since ψ+ = r2/3 sin(2
3
θ), the second derivatives of ψ+ can be bounded by |∂2ψ+(x, y)| 6

Cr−4/3. Taking into account that ψ+ is equal to Ihψ
+ at the three vertices of τh, we can use

the Taylor theorem to obtain

‖ψ+ − Ihψ
+‖L∞(∂τh) 6 Ch2r−4/3.

By the maximum principle and simple integrations we obtain

‖ψ+ − Ihψ
+‖2

L2(τh) 6 Ch6r−8/3. (25)

For the few elements τh that touch the origin, it is easy to see, for well-shaped elements,
that there exist positive constants C1 and C2 that do not depend on h such that

C1h
10/3 6 ‖ψ+ − Ihψ

+‖2
L2(τh) 6 C2h

10/3. (26)

This last result is obtained by using that the maximum of ψ+ − Ihψ
h, on an edge of the

triangle τh that has the origin as one of its endpoints, is reached at distance ch from the
origin. Where here c is positive constant and does not depend on h.

Summing the contributions of all elements τh ∈ Th(Ω) and using (25) and the upper
bound (26), we obtain (24). Further, we have

|λu∗ − λu| 6 Ch1/3λu∗ . (27)

This follows from the lower bound of (26) and Theorem (4.2). Hence, using (3), (27), and
(24), we obtain

‖u∗ − ũ‖L2(Ω) 6 Ch2
(‖f + ∆u∗0‖L2(Ω) + ‖u∗0‖H2(Ω)

)
.

The second-order estimate for ‖wu∗ − wũ‖L2(Ω) follows directly from the second-order
estimates for ‖u∗ − ũ‖L2(Ω) and |λu∗ − λũ|.

The fact that the error ‖u∗ − ũ‖H1(Ω) is of order h is proved in the same manner as for
the L2 error.
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For the second reconstruction approach, we use similar arguments to obtain:

Theorem 4.4. If f ∈ L2(Ω), and u∗0 vanishes on ∂Ω, then

h−2
(‖wu∗ − wû‖L2(Ω) + |λu∗ − λû|

)
+h−1|wu∗−wû|H1(Ω) 6 C

(‖f + ∆u∗0‖L2(Ω) + ‖u∗0‖H2(Ω)

)
.

Proof. Taking into account that u∗0 vanishes on ∂Ω and subtracting (16) from (15), we
obtain

|λu∗ − λû| =
∣∣∣∣∣∣
1

π

∫

Ω

f−(δψ−h − δψ−)

∣∣∣∣∣∣
. (28)

Note that δψ− vanishes on D1 and D6 and −∆δψ− belongs to L2(Ω). Hence, we can use
Theorem 4.2 (with δψ− instead of u∗) to obtain ‖δψ− − δψ−h ‖L2(Ω) 6 Ch2. The second-
order approximation of |λu∗−λû| follows from (28) and the Cauchy-Schwarz inequality. The
remaining part of the proof, i.e., L2 and H1 error estimates, is based on the same ideas as
the proof of Theorem 4.3.

5. Matrix notations and implementation issues

Using matrix terminology, we can write method (8) as follows. Solve
(

A b
bT c

)(
wu

λu

)
=

(
fϕ

f(ψ+)

)
,

where

Aij =

∫

Ω

∇ϕi∇ϕj, 1 6 i 6 N, 1 6 j 6 N,

bi =

∫

Ω

∇ϕi∇ψ+, 1 6 i 6 N,

and

c =

∫

Ω

∇ψ+∇ψ+.

Here, A is an N×N symmetric matrix and b is an N×1 vector, where N is the total number
of nodes of Th(Ω) including all boundary nodes. fϕ is an N × 1 vector defined by

fϕ =




∫
Ω

fϕ1

...∫
Ω

fϕN


 ,

and f(ψ+) =
∫
Ω

fψ+. We denote ϕi as the standard basis functions of V .

∇ψ+ blows up near the L-shapede corner (the origin) and, therefore, to obtain bi and c
with a good accuracy, numerical integrations should be done carefully. To calculate bi, we
do

bi =

∫

Ω

∇ϕi∇ψ+ =

∫

∂Ω

∂nψ
+ϕi −

∫

Ω

4ψ+ϕi =

∫

∂Ω

∂nψ+ϕi.
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Hence, bi is zero except if the node i is a boundary node. On D1 and D6, ∂nψ
+ has a singular

behavior and, fortunately, we can integrate ∂nψ
+ϕi exactly. On Dm,m = 2, · · · , 5, the ∂nψ

+

is smooth and we use a numerical quadrature to integrate ∂nψ+ϕi. To obtain c, we do:

c =

∫

Ω

∇ψ+∇ψ+ =

∫

∂Ω

∂nψ+ψ+ −
∫

Ω

4ψ+ψ+ =

∫

∂Ω

∂nψ+ψ+.

Only numerical integration is required on Dm, m = 2, · · · , 5. On D1 and D6 the function
ψ+ vanishes.

Let w = wu − u0. We have

(
A b
bT c

)(
w
λu

)
=

(
fϕ − Au0

f(ψ+)− bT u0

)
.

We now denote by win the discrete w on the interior nodes of Th(Ω) and by wb the discrete
w on the boundary nodes. Denoting ψ̂+ = Πmψ+ on Dm, we have wb = −λuψ̂

+. We then

get the linear system for

(
win

λu

)
given by

MA

(
win

λu

)
= bA, (29)

where

MA =

(
I 0 0

0 (−ψ̂+)T 1

)(
A b
bT c

) 


I 0

0 −ψ̂+

0 1




and

bA =

(
I 0 0

0 (−ψ̂+)T 1

) (
fϕ − Au0

f(ψ+)− bT u0

)
.

It is easy to see that the matrix MA is a positive definite symmetric matrix due to
Lemma 4.1 and, therefore, the CG algorithm can be used to solve (29). After we get win

and λu, we let wb = −λuψ̂
+ and u = w + u0 + λuψ

+, where w = win at the interior nodes
and w = wb at the boundary nodes. We note that optimal preconditioners for solving (29)
can easily be designed and analyzed. For instance, eliminating λu from MA, we reduce the
discrete problem (29) to a system of the form Bwin = gin. Here, B = Ain,in − ddT and
Ain,in is the sub-block matrix of A associated with the interior nodes on Th(Ω). The matrix
B is a one-rank perturbation of Ain,in and thus, using the Sherman-Morrison formula [23],
we can solve two linear systems with Ain,in instead of solving one linear system with B
(see also [15].). Several optimal preconditioners are well known for solving systems of the
form Ain,inx = b, since such problems arise when using the regular finite element method
with a zero Dirichlet boundary condition. Note that effective multigrid methods that take
the advantage of smoothed cut-off primal and dual singular functions have been developed
recently for solving certain nonsymmetric formulations [11, 12, 15]. The development of such
a kind of multigrid methods for the mortared symmetric formulation (8) seems promising
for future research.
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6. Numerical experiments

In the first set of experiments, whose results are reported in Table 1, we solved the discrete
Poisson equation (8) with f = −4s+ −4s+

2 + 6x(y2 − y4) + (x− x3)(12y2 − 2), where the
exact solution is u∗ = s+ + s+

2 + (x − x3)(y2 − y4). Here, s+ = ρ(r)ψ+ and s+
2 = ρ(r)ψ+

2 ,
where ψ+

2 is the next singular function associated with problem (1), i.e., ψ+
2 = r4/3 sin(4

3
θ).

The integer k is the level of refinement of the mesh, where k = 0 corresponds to a mesh with
2 triangles per quadrant. The L2 norm (H1 semi-norm) discretization error on the kth level
of mesh refinement is given by ek

2 = ‖u − u∗‖L2(Ω) (ek
1 = |u − u∗|H1(Ω)). The reconstructed

discrete stress intensity factors are given by λ̃k = λũ and λ̂k = λû. For this test, we have the
exact solution λu∗ = 1. We also measured the rate of convergence for four discrete errors
given by

σ̃k = log2

|λ̃k−1 − 1|
|λ̃k − 1| , σ̂k = log2

|λ̂k−1 − 1|
|λ̂k − 1| , εk

2 = log2

ek−1
2

ek
2

, εk
1 = log2

ek−1
1

ek
1

.

Table 1. Results with f = −4s+ −4s+
2 + 6x(y2 − y4) + (x− x3)(12y2 − 2)

k λ̃k − 1 σ̃k 1− λ̂k σ̂k ek
2 εk

2 ek
1 εk

1

2 2.967e-1 – 2.698e-3 – 7.512e-2 – 9.032e-1 –
3 9.457e-2 1.6497 6.914e-4 1.9642 2.415e-2 1.6380 5.027e-1 0.8454
4 2.651e-2 1.8349 1.673e-4 2.0474 6.805e-3 1.8275 2.673e-1 0.9115
5 6.862e-3 1.9497 4.083e-5 2.0152 1.764e-3 1.9475 1.361e-1 0.9736
6 1.730e-3 1.9873 1.006e-5 2.0216 4.454e-4 1.9858 6.839e-2 0.9928
7 4.341e-4 1.9952 2.550e-6 1.9832 1.116e-4 1.9958 3.424e-2 0.9980
8 1.085e-5 1.9996 6.290e-7 2.0154 2.794e-5 1.9991 1.713e-2 0.9994

Table 2. Result with f = 1

k λk σk λ̂k σ̂k ek2 εk2 ek1 εk1

2 0.392530808 – 0.400094292 — – – – –
3 0.399690201 – 0.401466455 — 7.0033e-3 – 9.4462e-2 –
4 0.401373618 2.0884 0.401814664 1.9784 1.9044e-3 1.8787 5.0036e-2 0.9168
5 0.401790082 2.0151 0.401901770 1.9991 4.9070e-4 1.9559 2.5597e-2 0.9670
6 0.401894921 1.9900 0.401923602 1.9963 1.2427e-4 1.9820 1.2931e-2 0.9851
7 0.401921650 1.9717 0.401929119 1.9845 3.1246e-5 1.9917 6.4995e-3 0.9925

In the second set of experiments, whose results are reported in Table 2, we solved the
discrete Poisson equation (8) with f = 1. Here, we do not know the exact solution. We
estimate the error on L2 norm (H1 semi-norm) by Richardson quotients given by ek

2 = ‖uk−
uk−1‖L2(Ω) (ek

1 = |uk − uk−1|H1(Ω)). For this example λu∗ is close to 0.40193193 (computed
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on a very fine mesh). We also measured the difference quotient rate of convergence for four
discrete errors given by

σ̃k = log2

|λ̃k−2 − λ̃k−1|
|λ̃k−1 − λ̃k| , σ̂k = log2

|λ̂k−2 − λ̂k−1|
|λ̂k−1 − λ̂k| , εk

2 = log2(
ek−1
2

ek
2

), εk
1 = log2(

ek−1
1

ek
1

).

The results of the numerical experiments reported in Tables 1 and 2 confirm the theory
showing optimality of all proposed algorithms. Tables 1 and 2 show, in particular, that
the computed stress intensive factor λû (obtained only through mortar techniques) is more
accurate than the factor λũ (obtained through smoothed cut-off dual singular function s−).
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