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Abstract

A variant of the classical additive Schwarz preconditioner (AS) is presented and applied to the solution of a general class of two-

and three-dimensional ¯ow problems. The scaled restricted additive Schwarz (RAS) with minimal overlap preconditioner is easy to

parallelize since all the local communications among processors only involve information pertaining to the interface of the nonov-

erlapping subdomains. The new method is superior to AS and the Jacobi algorithm in terms of both iteration counts and CPU time, as

well as the communication cost when implemented on distributed memory computers. Ó 2000 Published by Elsevier Science S.A. All

rights reserved.

1. Introduction

Numerical simulations of unsteady three-dimensional compressible ¯ow problems require the solution of
large, sparse, nonlinear systems of equations arising from the discretization of Euler or Navier±Stokes
equations on unstructured. In this paper we study a highly parallel, scalable and robust nonlinear iterative
method (DeC±Krylov±Schwarz) based on the Defect Correction method (DeC), the Krylov subspace
method (Krylov), the minimum overlap restricted additive Schwarz method (RAS) and the incomplete LU
factorization technique (ILU). We shall present the new method as algebraic preconditioners for general
sparse linear systems. The ``RAS'' method converged faster than the additive Schwarz method, the
GMRES method and Jacobi method both in terms of iteration counts and CPU time.

One important application of unsteady ¯ow simulation is the case of ¯ow problem with moving
boundaries. In Section 2, we formulate the Navier±Stokes equations in Arbitrary Lagrangian Eulerian
approach and overview a second-order discretization in space for unstructured ®nite volumes and/or ®nite
elements. In Section 3, we present a discrete version of the GCL for second-order implicit temporal dis-
cretizations. In Section 4, we discuss the solution of the resulting system of nonlinear equation using the
Defect Correction method. In Section 5, we discuss preconditioned iterative methods, Schwarz methods,
and introduce our scaled Krylov±RAS solver with minimal overlap. In Section 6, we test the capability of
the algorithms developed in this paper for a three-dimensional transonic Euler ¯ow around an oscillating
wing and low-speed Navier±Stokes ¯ow past a square cylinder. Finally, in Section 7 we conclude this paper
and comment on the parallel performance of the investigated methods.
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2. Formulation and semidiscretization of the ALE Navier±Stokes equations

Let X�t� � Rn �n � 2; 3) be the ¯ow domain of interest, and C�t� be its moving and/or deforming
boundary. We introduce a mapping function between X�t�, where time is denoted by t and a grid point's
coordinates by x, and a reference con®guration X�0� and a grid point's coordinates by n, as follows:

x � x�n; t�: �1�
The ALE nondimensional conservative form of the Navier±Stokes equations describing viscous ¯ows on
dynamic meshes can be written as [11,14,15]

oJW
ot

����
n

� Jrx �Fc�W; _x� � Jrx �R�W�; �2�

Fc�W; _x� �F�W� ÿ _xW;

where a dot superscript designates a time derivative, J � det�dx=dn�, _x � �ox=ot�jn is the grid speed, W is
the ¯uid state vector, Fc denotes the ALE convective ¯uxes, F is the usual Euler ¯uxes and R the di�usive
¯uxes. Eq. (2) describes the conservation of the ¯uid state on the reference con®guration X�0�.

We semidiscretize Eq. (2) on a triangulation (two-dimensional problems) or a tetrahedral mesh (three-
dimensional problems) from which we derive a dual mesh de®ned by control volumes or cells (Fig. 1).

We ®rst integrate Eq. (2) over a reference cell Ci�0� of the n space; next we switch from the n reference
space to the x space at time t; and ®nally we integrate by parts the convective and diffusive ¯uxes which
leads to

d

dt

Z
Ci�t�

W dXx �
Z

oCi�t�
Fc�W; _x� �~ni dr �

Z
oCi�t�

R�W� �~ni dr; �3�

where ~ni denotes the normal to the cell boundary oCi�t� (see [4] for more details).
We resolve the ALE convective ¯uxes by a suitable Riemann solver [17,8,12,9], and approximate the

di�usive terms by piecewise linear ®nite elements. The resulting semidiscrete version of Eq. (3) is

d

dt
�MiWi� � Fi�W ;X ; _X � � Ri�W ;X �; �4�

Fig. 1. A control volume in a two-dimensional unstructured mesh.
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where Mi �
R

Ci�t� dXx, Wi denotes the average value of W over the cell Ci�t�, Fi and Ri denote, respectively
the semidiscrete ALE convective and di�usive ¯uxes, W is the vector formed by the collection of Wi , X is the
vector of time-dependent grid point positions, and _X the mesh velocities vector.

3. Implicit time-integration of the semidiscrete ALE Navier±Stokes equations

Let tn and Dtn � tn�1 ÿ tn denote the nth time-station and the (n� 1)th time-step, respectively. Inte-
grating Eq. (4) between tn and tn�1 leads toZ tn�1

tn

d

dt
�MiWi� dt �

Z tn�1

tn
Fi�W ;X ; _X � dt �

Z tn�1

tn
Ri�W ;X � dt: �5�

For the desired large time-steps, the proper evaluation of the integrals
R tn�1

tn Fi�W ;X ; _X � dt andR tn�1

tn Ri�W ;X � dt, which means the determination of the mesh con®gurations where these integrals have to
be integrated, has a dramatic e�ect on accuracy. This speci®c issue has been addressed in [14,15] for ®rst-
order time-accurate schemes, and more recently in [4] for second-order time-accurate algorithms. Here, we
summarize the approach presented in [15,4], and specify the second-order time-integration algorithm
adopted.

A second-order time-accurate implicit algorithm that is popular in CFD is the second-order backward
di�erence scheme. A generalization of this algorithm for dynamic meshes that addresses the questions
raised above can be written as

an�1Mn�1
i W n�1

i � anMn
i W n

i � anÿ1Mnÿ1
i W nÿ1

i

� DtnWi�W n�1;X nÿl; . . . ;X n; . . . ;X n�m; _X nÿj; . . . ; _X n; . . . ; _X n�k� � 0;
�6�

where j, k, l and m are positive integers, X n � X �tn�,

an�1 � 1� 2s
1� s

; an � ÿ1ÿ s; anÿ1 � s2

1� s
; s � Dtn

Dtnÿ1

and

Wi �
X

s

wc
sFi�W n�1;X nc

s ; _X nc
s � ÿ wd

s Ri�W n�1;X nd
s �:

Here Mn
i � Mi�X n�, W n

i � Wi�X n�, wc
s and wd

s are real coe�cients that satisfy
P

s wc
s � 1,

P
s wd

s � 1. X nc
s , X nd

s

and _X nc
s are some linear combinations of the mesh con®gurations fX nÿl; . . . ;X n; . . . ;X n�mg and their ve-

locities f _X nÿj; . . . ; _X n; . . . ; _X n�kg. An important issue is then the proper construction of Wi so that the
generalized algorithm (6) retains as much as possible second-order time-accuracy on moving grids.

It can be shown that a su�cient condition for the time-integrator (6) to be mathematically consistent ±
that is, to be at least ®rst-order time-accurate ± is to predict exactly the state of a uniform ¯ow. This
su�cient condition, which was formulated in [4] as a geometric conservation law (GCL), can be used to
determine the coe�cients wc

s and the mesh con®gurations (X nc
s ; _X nc

s ). It is shown in [4] that for three-
dimensional problems, the time-integrator (3) equipped with the following four wc

s coe�cients and four
mesh con®gurations �X nc

s ; _X nc
s � satis®es the GCL and achieves high accuracy:

wc
1 �

an�1

2
; wc

2 �
an�1

2
; wc

3 � ÿ
anÿ1

2s
; wc

4 � ÿ
anÿ1

2s
;

d1 � 1

2
1

�
ÿ 1���

3
p
�

; d2 � 1

2
1

�
� 1���

3
p
�
;

xnc
1 � d1xn�1 � d2xn; xnc

2 � d2xn�1 � d1xn; xnc
3 � d1xn � d2xnÿ1; xnc

4 � d2xn � d1xnÿ1;

_xnc
1 � xn�1 ÿ xn

Dtn
; _xnc

2 � xn�1 ÿ xn

Dtn
; _xnc

3 � xn ÿ xnÿ1

Dtnÿ1
; _xnc

4 � xn ÿ xnÿ1

Dtnÿ1
:
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The principle of conservation of the state of a uniform ¯ow W � cannot be used as a guideline for deter-
mining the viscous coe�cients wd

s and the corresponding mesh con®gurations X nd
s , because Ri�W �;X nd

s � � 0.
However, these unknowns can be determined by performing a truncation error analysis ofR tn�1

tn Ri�W n�1;X � dt using a Taylor series expansion, and requiring that the quantity Dtn
P

s wd
s Ri�W n�1;X nd

s �
approximates this integral with an error O�Dt3�. It is shown in [5] that for three-dimensional problemsZ tn�1

tn
Ri�W ; x� dt � DtRi W n�1;

xn � xn�1

2

� �
�O�Dt3�:

It follows that the time-integrator (3) can be used with the following wd
s coe�cient and mesh con®gu-

ration xnc
s

wd
1 � 1;

xnd
1 � xn � xn�1

2
:

4. Implicit iterative defect correction method

The time-integration methodology described in the previous sections leads at each time-step to the
following set on nonlinear equations

an�1Mn�1
i W n�1

i � DtnWi � ÿanMn
i W n

i ÿ anÿ1Mnÿ1
i W nÿ1

i ;

where

Wi �
X

s

wc
sFi�W n�1;X nc

s ; _X nc
s � ÿ wd

s Ri�W n�1;X nd
s �;

where Wi is second-order space accurate and nonlinear.
It is well-known that constructing a second-order accurate spatial discretization of the jacobian oW=oW

is a complex and expensive task [3]. Then, the Newton's method becomes ine�ective for many unsteady
state aerodynamic simulations. One of the e�ective techniques for solving (4) is based on a defect-correction
(Newton-like) method [1] in which a ®rst-order semidiscretization of the jacobian oW=oW is used. The
convergence properties of this method have been analyzed in [3,16]. For ®xed meshes, it was shown in [16]
that two iterations su�ce to produce a solution that is second-order accurate both in space and time.

The so-called Defect Correction method is described as follows. Suppose that we have an initial guess
W n�1;0

i for W n�1
i obtained by using information calculated at previous time steps. In numerical examples of

this paper we consider W n�1;0 � W n. We iterate for j � 0; 1; . . . ;

W n�1;j�1
i � W n�1;j

i � nj
i ; �7�

where nj
i is the solution of the following linear system of equations

an�1Mn�1
i

 
� Dtn oWi

oW

�1st�
�W n�

!
nj

i � gn�1;j
i ; �8�

where

gn�1;j
i � ÿDtnWi�W n�1;j� ÿ an�1Mn�1

i W n�1;j
i ÿ anMn

i W n
i ÿ anÿ1Mnÿ1

i W nÿ1
i :

Here W�1st���� is a ®rst order space accurate Roe's numerical ¯ux. To simplify the notation, we denote gn�1;j

the nonlinear residual vector at the jth DeC iteration of the �n� 1�th time step and re-write (8) as

Ann
j � gn�1;j: �9�

We remark that (4) does not have to be solved exactly. All we need is to drive the nonlinear residual to
below a certain nonlinear tolerance s > 0, i.e.,
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kgn�1;jk26 skgn�1;0k2; �10�
such that W n�1;j gives a second order accurate solution in both space and time. Also (9) does not need to be
solved very accurately either, as its solution provides only a search direction for the outer DeC iteration.

5. Preconditioned iterative methods

Preconditioned iterative methods are often used for ®nding a ~nj � Cngj such that

kBn�AnCng
j ÿ gn�1;j�k26 dkBngn�1;jk2

for a certain linear tolerance d > 0. Here Bn and Cn are left and right preconditioners for An and ~nj is an
approximation of nj.

The e�ectiveness of the nonlinear implicit solver depends heavily, among other things, on the choice of
the preconditioner and a balanced selection of the nonlinear and linear stopping tolerance s and d. In this
paper, we focus on the study of a parallel restricted additive Schwarz preconditioned iterative method for
solving (9). For the numerical examples that we test in this paper, we use d � 0:01, and as a result only two
Defect Correction iterations are need to obtain a good accuracy.

We next describe four di�erent linear solvers for solving a sparse linear system Ax � g such as (9). The
di�erence between the linear solvers is in how we de®ne the left preconditioner B, the right preconditioner
C, and the accelerator that is used. The accelerators that we consider are GMRES ([18]) and Richardson
methods. For all the following iterative linear solvers, we take as initial guess x0 � 0. In order to compare
the performance of the different methods, we take B to be the same for all methods and consequently the
same stopping criterion for solving the linear system can be used, i.e.,

kB�AxK ÿ g�k26 dkBgk2: �11�
Here, xK is an approximation of x at iteration K.

5.1. Block Jacobi method

Let the matrix B � Dÿ1, where the block diagonal matrix D is de®ned as the diagonal blocks 5� 5 of A.
Let the matrix C be the identity matrix. The Block Jacobi method, also called Richardson iterative method
with block diagonal preconditioning, is de®ned as follows: for k � 0; 1; . . . ;K

xk�1 � xk ÿ Dÿ1�Axk ÿ g�:
We note that the stopping criterion (11) is equivalent to

kxK�1 ÿ xKk26 dkx1k2: �12�
The stopping criteria (12) is commonly used by scientists.

5.2. GMRES with block diagonal preconditioning

The matrices B and C are de®ned as in Section 5.1 We then apply GMRES to the problem
Dÿ1Ax � Dÿ1g. As a stopping criteria for the GMRES method we use (11), i.e.,

kDÿ1�AxK ÿ g�k26 dkDÿ1gk2:

5.3. The RAS and AS with minimun overlap and block diagonal preconditioning

We now describe a version of the RAS preconditioner, that was recently introduced in [2], but with the
smallest possible non-zero overlap and with a left block diagonal preconditioning. We consider a sparse
linear system
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~Ax � Dÿ1Ax � Dÿ1g; �13�
where A is an n� n nonsingular sparse matrix obtained by discretizing a system of partial differential
equations, such as (9), on a tetrahedral mesh M � fKi; i � 1; . . . ;Mg, where Ki are the tetrahedra. Using an
element-based partitioning, M can be decomposed into N nonoverlapping sets of elements, or equivalently
into N overlapping sets of nodes (since tetrahedra in different subsets may share the same nodes). Let us
denote the node sets as Wi ; i � 1; . . . ;N . Let W be the set of all the nodes, then we say that the node-based
partition

W �
[N
i�1

Wi

is a minimum overlap partition of W. Here ``minimum'' refers to the fact that the corresponding element-
based partition has zero overlap. The nodes belonging to more than one subdomain are called interface
nodes. To obtain a node-based nonoverlapping partition, we identify a unique subdomain as the sole owner
of each interface node. This leads to a node-based nonoverlapping partition of W, as shown in Fig. 2 for a
two-dimensional mesh, or more precisely W �0�

i � Wi , and[N
i�1

W �0�
i � W and W �0�

i \ W �0�
j � ; for i 6� j:

Let m be the total number of nodes in W. Associated with each W 0
i we de®ne a restriction operator R0

i . In
matrix terms, R0

i is an m� m block-sub-identity matrix whose diagonal blocks are set to I5�5 if the corre-
sponding node belongs to W 0

i and to a 5� 5 zero block otherwise. Similarly we can de®ne Ri for each Wi .
Note that both R0

i and Ri are of size n� n. With this we de®ne the matrix,

~Ai � Ri
~ARi:

Note that although ~Ai is not invertible, we can invert its restriction to the subspace

~Aÿ1
i � � ~Ai�jLi

� �ÿ1

;

where Li is the vector space spanned by the set Wi in Rn.
The RAS preconditioner is de®ned by

CRAS � R1
~Aÿ1

1 R0
1 � � � � � RN

~Aÿ1
N R0

N :

Fig. 2. A minimum overlap two-subdomain partition. W �0�
1 contains all the `�' nodes, and W �0�

2 contains all the `�' nodes, therefore

W �0�
1 \ W �0�

2 � ;. W �1�
1 contains all the nodes bounded inside the solid curve, and W �1�

2 contains all the nodes bounded inside the dotted

curve.
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We recall that the additive Schwarz (AS) preconditioner [7,19] is de®ned by

CAS � R1
~Aÿ1

1 R1 � � � � � RN
~Aÿ1

N RN :

Our GMRES/RAS algorithm can be simply described as follows: obtain an approximate solution for
x � CRASg by solving the right-preconditioned system

~ACRASg � Dÿ1g

with a GMRES method. As a stopping criteria, we use that

k ~ACRASgK ÿ Dÿ1gk26 dkDÿ1gk2:

In the numerical experiments to be reported in Section 6, all subdomain problems are solved with ILU(0)
and GMRES with a restart dimension equals to ®ve. We remark that the action of R0

i to a vector involve
less communication in a parallel implementation than Ri does. As a result, RAS is cheaper than AS in terms
of the communication cost. We will show in the numerical experiments that RAS is in fact also cheaper
than AS in terms of iteration counts and CPU time.

6. Numerical results

We implement the investigated algorithms on two parallel machines, and the top-level message-passing
calls are implemented through MPI [13]. We partition the mesh by using the TOP/DOMDEC package [10].
We require that all subdomains have more or less the same number of mesh points. An e�ort is made to
reduce the number of mesh points along the interfaces of the subdomains to reduce interprocessor com-
munication cost. The mesh generation and partitioning steps are considered as pre-processing steps, and
therefore not accounted for in the CPU reporting. The sparse matrix A is constructed at every time step and
stored in an edge-based sparse format. In order to save CPU time on factorization, the local sparse matrices
~Ai are constructed and factorized at every other time step. The ~Ai are stored in 5� 5 block diagonal

compressed row format.
We consider the simulation of an Euler ¯ow around the ¯exible AGARD Wing 445.6 [20] (Fig. 3) set in a

prescribed motion. The wing is forced to vibrate along its fundamental ¯exible mode shape X 1
W with a

constant circular frequency x and an amplitude a. Hence, the position XB of the ¯uid points lying on the
surface of the wing is forced into the harmonic motion

Fig. 3. Partial view of the CFD mesh.
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XB � X 0
W � a�X 1

W ÿ X 0
W � sin xt;

where X 0
W denotes the initial shape of the wing. The amplitude a is chosen such that the maximum vertical

de¯ection of the wing is equal to 3% of the wingspan. The circular frequency is set to x � 95. Note that the
associated frequency is f � 15 Hz which corresponds to the ®rst torsional mode of a realistic aircraft wing.

The CFL number is chosen such that the time-step Dt satis®es Dt � T=30, where T � 1=f denotes the
period of oscillation. This time-step is typical of a second order implicit time-integration scheme which
preserves the GCL.

We ®rst discretize the computational domain around the Agard Wing using two three-dimensional
unstructured tetrahedral meshes with 22 014 and 331 233 nodes.

We run our code for 100 time steps, where in each time step we solve two linear systems. We focus on the
average performance of the algorithms for solving a single linear system. The CPU time reported includes
all the computation related to solving the linear systems including the factorizations. The results on the
coarser grid are summarized in Table 1. Tables 2 and 3 are for the ®ner mesh. Due to the special choice of
the CFL numbers the time steps for the two test cases are roughly the same. Comparing the RAS columns
in Tables 1±3 we see that there is little dependence on the mesh sizes. However, we observe clearly that
Block Jacobi (BJAC) and GMRES with block diagonal preconditioning (BGMRES) have a strong de-
pendence on the mesh sizes. For the Agard Wing with 331233 nodes, the RAS algorithm is roughly three

Table 1

Iteration counts (CPU time in seconds). Euler ¯ow passing an oscillating wing at Mach 0.89. The mesh contains 22 014 nodes. subd is

the number of subdomains and d is the stopping condition. Performed on a 4-, 8- and 16-processors SGI Origen 2000

subd d � 10ÿ2

BJAC BGMRES AS RAS

4 41 (3.23) 27 (2.78) 13 (2.63) 10 (2.09)

8 41 (1.61) 27 (1.44) 13 (1.36) 10 (1.05)

16 41 (0.82) 27 (0.80) 14 (0.71) 10 (0.52)

Table 2

Iteration counts (CPU time in seconds). Euler ¯ow passing an oscillating wing at Mach 0.89. The mesh contains 331 233 nodes. subd is

the number of subdomains and d is the stopping condition. Performed on a 4-, 8- and 16-processors SGI Origen 2000

subd d � 10ÿ2

BJAC BGMRES AS RAS

4 81 (162) 57 (156) 13 (68.3) 10 (57.2)

8 81 (80.3) 57 (79.1) 13 (35.7) 11 (29.7)

16 81 (40.6) 57 (41.1) 14 (21.5) 11 (16.9)

Table 3

Iteration counts (ITER), computational time (COMP), and communication time (COMM) in seconds. Euler ¯ow passing an oscil-

lating wing at Mach 0.89. The mesh contains n � 331 233 nodes. subd is the number of subdomains d is the stopping condition.

Performed on a 40-processors SP2

subd � 40 d � 10ÿ2 d � 10ÿ8

BJAC BGMRES AS RAS BJAC BGMRES AS RAS

ITER 81 57 15 11 444 312 78 58

COMP 7.7 6.7 3.9 2.9 40.2 38.1 17.1 12.7

COMM 0.65 0.80 0.49 0.35 2.4 2.5 1.6 1.1
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times faster than BJAC and BGMRES for di�erent stopping conditions d. We expect that RAS will per-
form even better for larger meshes. As the number of subdomains grows from 4 to 16 or 40, the number of
iterations of RAS stays roughly constant even though the preconditioner lacks a coarse space. Another
observation is that RAS requires 20±30% fewer number of iterations than AS for the test cases. Some of the
CPU timings were obtained on a 4-, 8- and 16-processors SGI Origin 2000. Even though this is a shared
memory machine, we still trea t it as a message-passing machine.

We next investigate the behavior of the previous linear solvers for the simulation of vortex shedding
¯ows by solving Navier±Stokes equations equipped with a k±� turbulence model and a wall function [6].
This turbulence model is popular in the engineering community. We consider the three-dimensional nu-
merical simulation of the low-speed ¯ow past a square cylinder using unstructured mesh with 43 154 nodes
(Fig. 4). The cylinder has a 1 cm � 1 cm cross section. The far-®eld ¯ow is assumed to be uniform. The free-
stream Mach number is M1 � 0:1, and the Reynolds number is Re � 22 000. We select a time-stepping
strategy that corresponds to sampling the captured vortex shedding in 100 times-steps.

Comparing the columns in Table 4 we conclude that the RAS algorithm is 20% faster than ASM and
80% faster than BJAC and BGMRES. Also, we see that the number of iterations of RAS stays roughly
constant as the number of subdomains grows from 4 to 16.

7. Concluding remarks

We studied the performance of a newly introduced RAS preconditioner and tested it in transonic ¯ow
calculations over an oscillating wing and low-speed vortex shedding ¯ow calculations. A scaled GMRES/
RAS with minimun overlap compares very favorably against traditional methods in terms of iteration

Fig. 4. Three-dimensional discretization of the computational mesh (partial view).

Table 4

Iteration counts (CPU time in seconds). Low-speed ¯ow passing a square cylinder at Mach 0.10. The mesh contains 43 154 nodes. subd

is the number of subdomains and d is the stopping condition. Performed on a 4-, 8- and 16-processors SGI Origen 2000

subd d � 10ÿ2

BJAC BGMRES AS RAS

4 88 (12.5) 57 (11.9) 20 (7.88) 17 (6.81)

8 88 (6.24) 57 (6.09) 22 (4.34) 18 (3.58)

16 88 (3.11) 57 (3.10) 23 (2.28) 19 (1.82)
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counts, CPU time and communication time when implemented on a parallel computer. Even though we the
RAS method do not have a coarse space, the number of iterations is nearly independent of the number of
subdomains for all the test cases.
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