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Abstract. Coarse spaces play a crucial role in making Schwarz type domain de-
composition methods scalable with respect to the number of subdomains. In this
paper, we consider coarse spaces based on a class of partition of unity (PU) for
some domain decomposition methods including the classical overlapping Schwarz
method, and the new Schwarz method with harmonic overlap. PU has been used
as a very powerful tool in the theoretical analysis of Schwarz type domain decom-
position methods and meshless discretization schemes. In this paper, we show that
PU can also be used effectively in the numerical construction of coarse spaces.
PU based coarse spaces are easy to construct and need less communication than
the standard finite-element-basis-function-based coarse space in distributed mem-
ory parallel implementations. We prove the new result that the condition number
of the algorithms grows only linearly with respect to the relative size of the over-
lap. We also introduce the additive Schwarz method (AS) with harmonic overlap
(ASHO), where all functions are made harmonic in part of the overlapping regions.
As a result, the communication cost and condition number of ASHO is smaller than
that of AS. Numerical experiments and a conditioning theory are presented in the
paper.

1 Introduction

Fast domain decomposition algorithms for elliptic problems are typically two-
level methods. In this paper, we introduce and analyze two-level overlapping
Schwarz methods for unstructured meshes. These methods are based on par-
tition of unity (PU) coarse spaces and/or on the concept of harmonic overlap
introduced in [4]. Work on two-level methods on unstructured meshes is not
new. Several different approaches have been introduced and some can be
found in [1,2,6–14,16] and papers cited therein. Related works to ours, based
on two-level agglomeration techniques, can be found in [1,10]. Their anal-
ysis use a class of partition of unity coarse space based on agglomeration
smoothing techniques and they have proven an upper bound for the con-
dition number which depends quadratically on the relative overlap. In this
paper, we consider coarse basis functions based on the kind of partition of
unity used in the theoretical analysis of Schwarz methods. These coarse basis
functions have been around for some time and can be found in some of the
numerical experiments of [10]. This kind of partition of unity has a controlled
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decaying property on the overlapping region. In the analysis, we instead of
using two distinct partition of unities, one for designing the algorithm and
another one for analyzing the algorithm, as used by [10], we here use the
same partition of unity for both except near the boundary. To accomplish
that, we use a key argument based on a combination of Neumann-Neumann
[12,9] and small overlap techniques [8] to establish a new result in which an
upper bound for the condition number of the preconditioners depends only
linearly on the relative overlap. We remark that this key argument for the
analysis was directly inspired by the the analysis developed in RASHO [3,4].

We note that partition of unity functions do not vanish on the bound-
ary of the original domain. Hence, they cannot be used straightforwardly as
coarse basis functions since they should satisfy zero Dirichlet boundary con-
ditions for Dirichlet boundary problems. We have tested two approaches. For
the first approach, we do not include in the coarse spaces, the coarse basis
functions that touch ∂Ω; i.e. the boundary coarse functions. For the second
approach, we modify the boundary coarse functions so that they have a con-
trolled decaying to zero near ∂Ω and include them in the coarse spaces. We
show that coarse spaces with boundary coarse functions are much more effec-
tive than without them. We first concentrate ourselves in this paper toward
analyzing the second approach case. The analysis for coarse spaces without
the boundary coarse basis functions will then follow easily. We refer to [11]
for a modified proof of the first approach and for discussions on the choice of
coarse basis functions and related rate of convergence.

The preconditioners to be discussed below are applicable for general sym-
metric positive definite problems. They are algebraic in the sense that the no-
tions of subdomains, harmonic overlaps, the classification of the nodal points,
etc., can all be defined in terms of the graph of the sparse matrix. In order
to provide a complete and simple mathematical analysis, we restrict our dis-
cussion to a finite element problem, the Poisson problem with zero Dirichlet
boundary condition. Find u ∈ H1

0 (Ω), such that

a(u, v) = f(v), ∀ v ∈ H1
0 (Ω), (1)

where

a(u, v) =
∫

Ω

∇u · ∇v dx and f(v) =
∫

Ω

fv dx for f ∈ L2(Ω).

For simplicity, let Ω be a bounded polygonal region in <2 with a diameter
of size O(1). The extension of the results to <3 can be carried out easily. Let
T h(Ω) be a shape regular, quasi-uniform triangulation, of size O(h), of Ω and
V ⊂ H1

0 (Ω) the finite element space consisting of continuous piecewise linear
functions associated with the triangulation. The extension of the theory for
the case of local quasi-uniform triangulation is also straightforward. We are
interested in solving the following discrete problem associated with (1): Find
u∗ ∈ V such that

a(u∗, v) = f(v), ∀ v ∈ V. (2)
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Using the standard basis functions, (2) can be rewritten as a linear system
of equations

Au∗ = f. (3)

For simplicity, we understand u∗ and f both as functions and vectors de-
pending on the situation. Throughout this paper, C and C0, are positive
generic constants that are independent of any of the mesh parameters and
the number of subdomains. All the domains and subdomains are assumed to
be open; i.e., boundaries are not included in their definitions.

2 Notations

Given the domain Ω and triangulation T h(Ω), we assume that a domain
partition has been applied and resulted in N non-overlapping subdomains
Ωi, i = 1, . . . N of size O(H), such that

Ω = ∪N
i=1Ωi, Ωi ∩Ωj = ∅, for j 6= i.

We define the overlapping subdomains Ωδ
i as follows. Let Ω1

i be the one-
overlap element extension of Ωi, where Ω1

i ⊃ Ωi is obtained by including
all the immediate neighboring elements τh ∈ T h(Ω) of Ωi such that τh ∩
Ωi 6= ∅. Using the idea recursively, we can define a δ-extension overlapping
subdomains Ωδ

i

Ωi ⊂ Ω1
i ⊂ · · ·Ωδ

i .

Here the integer δ ≥ 1 indicates the level of element extension and δh is
the approximate length of the extension. We note that this extension can be
coded easily through the knowledge of the adjacent matrix associated to the
mesh.

In this paper we consider the case of Dirichlet boundary condition on
the whole ∂Ω. To introduce coarse basis functions of low energy near ∂Ω we
introduce a Dirichlet boundary treatment. Let Ω1

B be one layer of elements
near the Dirichlet boundary ∂Ω and then define recursively,

Ω1
B ⊂ Ω2

B · · ·Ωδ
B

with δ levels of extension by adding recursively neighboring elements. We
note that we can choose δ extensions to obtain Ωδ

i and δ̂ to obtain Ωδ̂
B .

If O(δ) ≤ δ̂ ≤ O(H/h), we obtain similar upper bounds in the analysis.
Numerically, δ̂ = δ gives good results.

To define and analyze the new preconditioners, we subdivide Ωδ
i as follow.

Let γδ
i = ∂Ωδ

i \∂Ω, i = 1, · · · , N ; i.e., the part of the boundary of Ωδ
i that

does not belong to the physical boundary of Ω. Let γδ
B = ∂Ωδ

B\∂Ω. We define
the interface overlapping boundary Γ δ as the union of all the γδ

i and γδ
B ; i.e.,

Γ δ = ∪N
i=B,1γ

δ
i . We also need the following subsets of Ωδ

i
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• Γ δ
i = Γ δ ∩Ωδ

i (local interface)

• N δ
i = Ωδ

i \(∪j 6=iΩ
δ
j ∪Ωδ

B ∪ Γ δ
i ) (non-overlapping region)

• Oδ
i = Ωδ

i \(N δ
i ∪ Γ δ

i ) (overlapping region)

We note that Ωδ
i = N δ

i ∪Γ δ
i ∪Oδ

i . The region Oδ
i is the overlapping region

of Ωδ
i excluding the Γ δ

i . The region N δ
i is the subregion of Ωδ

i which does
not overlap any neighboring extended subdomain Ω

δ

j and Ω
δ

B . We recall that
the regions Oδ

i and N δ
i are open sets.

3 Overlapping Additive Schwarz (AS) Methods

We next review the AS method and then introduce a coarse space based on
a partition of unity.

3.1 The AS Method without a Coarse Space

We introduce the space Vδ
i = V ∩ H1

0 (Ωδ
i ) extended by zero to Ω\Ωδ

i . It is
easy to verify that

V = Vδ
1 + Vδ

2 + · · ·+ Vδ
N .

This decomposition is used in defining the classical one-level additive Schwarz
algorithm [15]. Note that this decomposition is not a direct sum. Let us define
P δ

i : V → Vδ
i by: for any u ∈ V

a(P δ
i u, v) = a(u, v), ∀v ∈ Vδ

i . (4)

Then, the classical one-level additive Schwarz operator has the form

P δ = P δ
1 + · · ·+ P δ

N .

We next introduce a partition of unity (PU) coarse space Vδ
0 to the AS

method.

3.2 A PU Coarse Space for the AS Method

We next construct a partition of unity θδ
i such that θδ

i ∈ Vδ
i , 0 ≤ θδ

i (x) ≤ 1,
|∇θδ

i (x)| ≤ C/(δh), and
∑N

i=B,1 θδ
i ≡ 1. We next give one possible construc-

tion of the θδ
i . We first construct the function θ̂δ

B ∈ Vδ
i as follows. We let

θ̂δ
B(x) = 1 and θ̂δ

B(x) = 0 for nodes x on ∂Ω and Ω\Ωδ
B , respectively. For

the first layer of neighboring nodes x of ∂Ω we let θ̂δ
B(x) = (δ − 1)/δ, For

the second layer of neighboring nodes x of ∂Ω we let θ̂δ
B(x) = (δ − 2)/δ, and

recursively, we let θ̂δ
B(x) = (δ− k)/δ for the (k)st layer of neighboring nodes

x of ∂Ω. Similarly, for i = 1, · · · , N , we let θ̂δ
i (x) = 1 and θ̂δ

i (x) = 0 for nodes
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x of Ωi\Ωδ
B and Ω\Ωδ

i , respectively. For the first layer of neighboring nodes
x of Ωi\Ωδ

B we let θ̂δ
i (x) = (δ−1)/δ, and recursively, we let θ̂δ

i (x) = (δ−k)/δ
for the (k)st layer of neighboring nodes x of Ωi\Ωδ

B . It is easy to verify that
0 ≤ θ̂δ

i (x) ≤ 1, and for quasi-uniform triangulation |∇θ̂δ
i (x)| ≤ C/(δh). The

partition of unity θδ
i is defined as

θδ
i = Ih(

θ̂δ
i∑N

j=B,1 θ̂δ
j

).

It is easy to verify that
∑N

i=B,1 θδ
i (x) = 1, 0 ≤ θδ

i (x) ≤ 1, and |∇θδ
i (x)| ≤

C/(δh),∀x ∈ Ω̄.
The PU coarse space Vδ

0 is given as the linear combination of the coarse
basis functions θδ

i , i = 1, · · · , N . Note that we do not include the θδ
B to the

PU coarse space Vδ
0 . Let us define P0 : V → Vδ

0 by: for any u ∈ V

a(P δ
0 u, v) = a(u, v), ∀v ∈ Vδ

0 .

Then, the two-level additive Schwarz operator with the PU coarse problem
P δ

0 has the form

P δ
C =

N∑
i=0

P δ
i .

4 AS Methods with Harmonic Overlap (ASHO)

We next introduce two ASHO methods: One without coarse space and a
second one with a coarse space based on a partition of unity.

4.1 ASHO Method without a Coarse Space

We define Ṽδ
i as a subspace of Vδ

i consisting of functions that are discrete
harmonic at all nodes interior to Oδ

i , i.e. u ∈ Ṽδ
i , if for all nodes xk ∈ Oδ

i ,

a(u, φxk
) = 0.

Here, φxk
∈ V is the regular finite element basis function associated with

node xk, i.e. φxk
(xk) = 1, and φxk

(xj) = 0, j 6= k.
We define Ṽδ as a subspace of V defined as

Ṽδ = Ṽδ
1 + Ṽδ

2 + · · ·+ Ṽδ
N .

We note that the above sum is not a direct sum and Ṽδ
i 6= Vδ

i . We define
P̃ δ

i : Ṽδ → Ṽδ
i to be the projection operators such that, for any u ∈ Ṽδ

a(P̃ δ
i u, v) = a(u, v), ∀v ∈ Ṽδ

i .



6 Marcus Sarkis

Then, the one-level additive overlapping Schwarz method (ASHO) with har-
monic overlap is defined as

P̃ δ =
N∑

i=1

P̃ δ
i .

We next introduce a PU coarse space Ṽδ
0 for the ASHO method.

4.2 A PU Coarse Space for ASHO Method

To define the PU coarse space Ṽδ
0 ⊂ Ṽδ, we simply modify our basis functions

θδ
i to θ̃δ

i . The θ̃δ
i is defined to be equal to θδ

i except on Oδ
i . On Oδ

i we make
θ̃δ

i discrete harmonic.
The PU coarse space Ṽδ

0 is given as the linear combination of the coarse
basis functions θ̃δ

i , i = 1, · · · , N . We introduce P̃0 : Ṽδ → Ṽδ
0 as the operator

such that, for any u ∈ Ṽδ,

a(P̃ δ
0 u, v) = a(u, v), ∀v ∈ Ṽδ

0 (5)

Then, the two-level ASHO with the PU coarse problem P̃ δ
0 is defined as

P̃ δ
C =

N∑
i=0

P̃ δ
i . (6)

5 Hybrid Methods with PU Coarse Spaces

In this paper we also consider the special hybrid Schwarz operator (see
[15,13]) with the error propagation operator given by

(I −
N∑

i=1

P δ
i )(I − P δ

0 ),

or after an additional coarse solve,

(I − P δ
0 )(I −

N∑
i=1

P δ
i )(I − P δ

0 ). (7)

This is a symmetric operator with which we can work essentially without any
extra cost, since when forming powers of the operator (7), we can use the fact
that I − P δ

0 is a projection, and therefore (I − P δ
0 )2 = I − P δ

0 . Subtracting
the operator (7) from the identity operator I, we obtain the operator

P δ
hyb = P δ

0 + (I − P δ
0 )(

N∑
i=1

P δ
i )(I − P δ

0 ).
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We also consider the harmonic overlap version for the hybrid algorithm
defined by

P̃ δ
hyb = P̃ δ

0 + (I − P̃ δ
0 )(

N∑
i=1

P̃ δ
i )(I − P̃ δ

0 ).

6 Remarks about ASHO Methods

We next show that the explicit elimination of the variables associated with
the overlapping nodes is not needed in order to apply P̃ δ to any given vector
v ∈ Ṽδ.

Lemma 1. For any u ∈ Ṽδ, we have

P̃ δ
i u = P δ

i u, i = 1, · · · , N.

Hence, P̃ δu = P δu, u ∈ Ṽδ.

Proof. If u ∈ Ṽδ then

a(P δ
i u, φxk

) = a(u, φxk
) = 0, ∀xk ∈ Oδ

i .

Hence, P δ
i u ∈ Ṽδ

i . Here, φxk
∈ Vδ

i are the regular basis functions associated
to the nodes xk. To complete the proof of the lemma, we just need to verify
that

a(P δ
i u, v) = a(u, v), ∀v ∈ Ṽδ

i . (8)

To verify (8), we use the definition of P δ
i (4) and that Ṽδ

i is a subset of Vδ.

We note that the solution u∗ of (3) is not in the subspace Ṽδ, therefore,
the operators P̃ δ, P̃ δ

C , and P̃ δ
hyb cannot be used to solve the linear system

(3) directly. We will need to modify the right-hand side of the system (3).
A reformulated (3) will be presented in Lemma 2 below. Using the matrix
notations, the next lemma shows how to modify the system (3) so that its
solution belongs to Ṽδ. Let Oδ = ∪iOδ

i . Let W δ
O be the set of nodes associated

to the degree of freedom of Vδ in Oδ. We define the restriction operator, or
a matrix, ROδ : W → W as follows

(ROδv) (xk) =

 vk if xk ∈ WOδ

0 otherwise.

The matrix representation of Rδ
O is given by a diagonal matrix with 1 for

nodal points in the interior of Oδ and zero for the remaining nodal points.
Using this restriction operator, we define the subdomain stiffness matrix as

AOδ = ROδ A RT
Oδ ,



8 Marcus Sarkis

which can also be obtained by the discretization of the original finite element
problem on Oδ with zero Dirichlet data on ∂Oδ and extended by zero outside
of Oδ. We remark that O is a disconnected region where ∂O = Γ δ

i ∪ ∂Ω.
Therefore, AOδw = f can be solved locally and inexpensively.

It is easy to see that the following lemma holds; see [4].

Lemma 2. Let u∗ and f be the exact solution and the right-hand side of (3),
and

w = RT
OδA

+
OδROδf. (9)

Then ũ∗ = u∗ − w ∈ Ṽδ and satisfies the following modified linear system of
equations

Aũ∗ = f −Aw = f̃ .

7 Theoretical Analysis

The algorithms presented in the previous section are applicable for general
sparse, symmetric positive definite linear systems. The notions of subdo-
mains, harmonic overlaps, the classification of the regions Oδ

i and N δ
i and

the interfaces Γ δ
i , etc., can all be defined in terms of the graph of the sparse

matrix. In this section we provide a sharp and nearly optimal estimate for a
Poisson equation discretized with a piecewise linear finite element method.
We estimate the condition numbers of the operators P δ, P̃ δ, P δ

C , P̃ δ
C , P δ

hyb,
and P̃ δ

hyb in terms of the fine mesh size h, the subdomain size H, and the
overlapping factor δ. We shall follow the abstract additive Schwarz theory
[15] to analyze the additive versions, where three assumptions have to be
checked and three paramenters C0, ω and ρ(E) estimated. Two assumptions
are trivial to check: ω = 1 since we use exact solvers, and ρ(E) ≤ C since we
use two-level algorithms. So our focus in the rest of the paper is in bounding
C0 for each of the preconditioned operators P δ, P δ

C , P̃ δ
C , and P̃ δ. To analyze

the hybrid algorithms we use a result due to Mandel (Lemma 3.2 [13]) which
in our context is given by
Lemma 3.

λmin(P δ
hyb) ≥ λmin(P δ

C), λmin(P̃ δ
hyb) ≥ λmin(P̃ δ

C)

λmax(P δ
hyb) ≤ λmax(P δ), and λmax(P̃ δ

hyb) ≤ λmax(P̃ δ).

7.1 Additive Schwarz with a PU Coarse Space

Let Vδ
i,0, i = 1, · · · , N be the one-dimensional spaces generated by the θδ

i

coarse basis functions. We introduce the interpolation-like operator Iδ
0 =∑N

i=1 Iδ
i,0, where the Iδ

i,0 : V → Vδ
i,0 is defined as follows:

(Iδ
i,0u)(x) = ūδ

i θ
δ
i (x),
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where

ūδ
i =

∫
Ωδ

i
udx∫

Ωδ
i
1dx

,

is the average of u on the extended region Ωδ
i . Here |Ωδ

i | is the area of the
region Ωδ

i .
We next we give a direct proof of the H1-stability of Iδ

0 . We remark that
the H1-stability is not new and an alternative proof can be found in [10].

Lemma 4. For any u ∈ V we have

a(Iδ
0u, Iδ

0u) ≤ C
H

δh
a(u, u). (10)

Proof. Let c be an arbitrary constant. Using Cauchy-Schwarz inequality and
the fact |Ωδ

i | = O(H2) we have

|ūδ
i − c| = 1

|Ωδ
i |

∣∣∣∣∣
∫

Ωδ
i

(u− c)dx

∣∣∣∣∣ ≤ C
1
H
‖u− c‖L2(Ωδ

i
). (11)

Let Ωδ
j be a neighbor subdomain of Ωδ

i ; i.e., Ωδ
j ∩Ωδ

i 6= ∅. Using a trian-
gular inequality and the estimate (11), we obtain

|ūδ
i − ūδ

j | ≤ |ūδ
i − c|+ |ūδ

j − c| ≤ C
1
H
‖u− c‖L2(Ωδ

i
∪Ωδ

j
).

Applying a Bramble-Hilbert argument, we have

|ūδ
i − ūδ

j | ≤ C
H inf

c
‖u− c‖L2(Ωδ

i
∪Ωδ

j
)

≤ C
H inf

c
‖u− c‖L2(Ωδ,ext

i
)

≤ C |u|H1(Ωδ,ext
i

).

(12)

Here Ωδ,ext
i is the union of Ωδ

i and all of its neighbors Ωδ
k. We note that we

use here that Ωδ,ext
i has size O(H) and has nice shape in order to obtain the

last inequality through Friedrichs inequality. For the case when Ωδ
i is distant

O(H) from the boundary ∂Ω, we use another Friedrichs inequality to obtain

|ūδ
i | ≤ C

1
H
‖u‖L2(Ωδ

i
) ≤ C

1
H
‖u‖L2(Ωδ,ext

i
) ≤ C|u|H1(Ωδ,ext

i
), (13)

where Ωδ,ext
i is the union of Ωδ

i and all of its neighbors Ωδ
k and possibly a

few more Ωδ
k′ so that Ωδ,ext

i has size O(H) and intersects the boundary ∂Ω
on a set of measure of O(H).
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The rest of the proof is devoted to bound |Iδ
0u|2

H1(N δ
i
)

and |Iδ
0u|2

H1(Oδ
i
)
.

For x ∈ N δ
i , we have θδ

j (x) = 0, j 6= i, and θδ
i (x) = 1. Therefore, we have

|Iδ
0u|2H1(N δ

i
) = |ūδ

i |2H1(N δ
i
) = 0.

For the region Oδ
i we have

|u0|2H1(Oδ
i
) = |Iδ

0u|2H1(Oδ
i
) = |

N∑
j=B,1

ūδ
jθ

δ
j |2H1(Oδ

i
),

where here we have introduced, artificially, the constant ūδ
B = 0.

We next use that
N∑

j=B,1

θδ
j (x) = θδ

i (x) +
∑
j 6=i

θδ
j (x) = 1, ∀x ∈ Ω̄

to obtain

|Iδ
0u|2H1(Oδ

i
) =

∣∣∣∣∣∣
∑
j 6=i

(ūδ
j − ūδ

i )θ
δ
j

∣∣∣∣∣∣
2

H1(Oδ
i
)

.

By a triangular inequality we have

|Iδ
0u|2H1(Oδ

i
) ≤ C

∑
j 6=i

|(ūδ
j − ūδ

i )θ
δ
j |2H1(Oδ

i
) ≤ C

∑
j 6=i

|ūδ
j − ūδ

i |2|θδ
j |2H1(Oδ

i
).

We next use that |∇θδ
k(x)| ≤ C/(δh), the fact the area of Oδ

i is at most of
O(Hδh), and the estimates (12) (case j 6= B) and (13) (case j = B), to
obtain

|ūδ
j − ūδ

i |2|θδ
j |2H1(Oδ

i
) ≤ C

H

δh
|u|2

H1(Ωδ,ext
i

)
. (14)

The estimate (10) follows by summing the contributions of all extended
domains Ωδ,ext

i and using a coloring argument.
For the case when the boundary coarse basis functions θδ

i are not included
in the coarse space, we just set ūδ

i = 0 and the proof above also holds. In this
case, we use (12) for subdomains that are neighbors of boundary domains.
We note that the last constant C in (13) grows when the size of Ωδ,ext

i gets
larger, or equivalently, when Ωδ

i gets more distant from ∂Ω. That explain why
coarse spaces without the boundary coarse basis functions are less effective
than with them.

We next prove the main result of the paper.

Theorem 1. There exists a constant C > 0, independent of h, δ, and H,
such that

κ(P δ) ≤ C
1

H2
(1 +

H

δh
) (15)
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and

κ(P δ
hyb) ≤ κ(P δ

C) ≤ C(1 +
H

δh
). (16)

Proof. The bound (15) is well known and it is proved in Dryja and Widlund
[8]. The first inequality of (16) follows directly from the Lemma 3. What
remains to complete the proof is to derive a bound for C0; i.e., to find C0

such that for any given u ∈ V, there exist ui ∈ Vδ
i , such that

u =
N∑

i=0

ui, (17)

and
N∑

i=0

a(ui, ui) ≤ C0a(u, u). (18)

We define the decomposition u =
∑N

i=0 ui as follows. Let u0 ∈ Vδ
0 be

defined as

u0 = Iδ
0u =

N∑
i=1

ūδ
i θ

δ
i ,

and let ui ∈ Vδ
i be defined as

ui = Ih(ϑδ
i u)− ūδ

i θ
δ
i , i = 1, . . . , N.

Here, Ih is the standard pointwise interpolator. The piecewise linear functions
ϑδ

i ∈ H1(Ωδ
i ) are defined below and form a partition of unity

∑N
i=1 ϑi ≡ 1 on

Ω̄. It is easy to see (17) holds.
We next modify the coarse basis functions θδ

i on (Ω̄δ
i ∩ Ω̄δ

B) to define
the partition of unity ϑδ

i . We first construct the function ϑ̂δ
i ∈ H1(Ωδ

i ). Let
ϑ̂δ

i (x) = 1 and ϑ̂δ
i (x) = 0 for nodes x of Ωi and Ω\Ωδ

i , respectively. For
the first layer of neighboring nodes x of Ωi we let ϑ̂δ

i (x) = (δ − 1)/δ, and
recursively, we let ϑ̂δ

i (x) = (δ − k)/δ for the (k)st layer of neighboring nodes
x of Ωi. The partition of unity ϑδ

i is defined as

ϑδ
i = Ih(

ϑ̂δ
i∑N

j=1 ϑ̂δ
j

).

It is easy to verify that
∑N

i=1 ϑδ
i (x) = 1, 0 ≤ ϑδ

i (x) ≤ 1, and |∇ϑδ
i (x)| ≤

C/(δh), when x ∈ Ω̄, and also that ϑδ
i (x) = θδ

i (x), i = 1, · · · , N , when x ∈
Ω\Ωδ

B .
We decompose ui as ui = u0

i + uB
i where

u0
i = Ih(θδ

i (u− ūδ
i )), and uB

i = Ih((ϑδ
i − θδ

i )u)), i = 1, · · · , N. (19)
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The next step is to bound
∑N

i=0 a(ui, ui). In order to bound a(u0, u0) we
use Lemma 4. The remaining of the proof is to bound a(u0

i , u
0
i ) and a(uB

i , uB
i )

since
a(ui, ui) ≤ 2a(u0

i , u
0
i ) + 2a(uB

i , uB
i ), i = 1, · · · , N.

We denote wi = u− ūδ
i . Estimating a(u0

i , u
0
i ) as in the standard additive

Schwarz method [8], we obtain

a(u0
i , u

0
i ) = |Ih(θδ

i wi)|2H1(Ωδ
i
) ≤ C

(
|wi|2H1(Ωδ

i
) +

1
(δh)2

‖wi‖L2(Oδ
i
)

)
.

Using Lemma 3 in Dryja and Widlund [8]; i.e.,

1
(δh)2

‖wi‖2
L2(Oδ

i
) ≤ C

(
(1 +

H

δh
)|wi|2H1(Ωδ

i
) +

1
H(δh)

‖wi‖2
L2(Ωδ

i
)

)
,

we obtain

|u0
i |2H1(Ωδ

i
) ≤ C

(
(1 +

H

δh
)|wi|2H1(Ωδ

i
) +

1
H(δh)

‖wi‖2
L2(Ωδ

i
)

)
.

Combining these estimates and that |wi|2H1(Ωδ
i
)
= |u|2

H1(Ωδ
i
)

and a Friedrichs
inequality

‖wi‖2
L2(Ωδ

i
) ≤ CH2|u|2H1(Ωδ

i
),

we obtain
a(u0

i , u
0
i ) ≤ C(1 +

H

δh
)|u|2H1(Ωδ

i
).

We next bound a(uB
i , uB

i ). We note that for i = 1, · · · , N

ϑδ
i (x) = θδ

i (x),∀x ∈ Ω\Ω̄δ
B ,

and therefore the support of uB
i is Ω̄δ

B ∩ Ω̄δ
i .

Using standard additive Schwarz methods arguments, we obtain

a(uB
i , uB

i ) = |uB
i |2H1(Ωδ

i
∩Ωδ

B
) ≤ C

(
|u|2H1(Ωδ

i
∩Ωδ

B
) +

1
(δh)2

‖u‖2
L2(Ωδ

i
∩Ωδ

B
)

)
.

Using a Friedrichs inequality for the case when the width of Ωδ
i ∩Ωδ

B is O(δh)
and u vanishes on the larger side (u vanishes on ∂Ω); i.e.,

‖u‖2
L2(Ωδ

i
∩Ωδ

B
) ≤ C(δh)2|u|2H1(Ωδ

i
∩Ωδ

B
),

we obtain
a(uB

i , uB
i ) ≤ C|u|2H1(Ωδ

i
∩Ωδ

B
).

And the proof is complete by summing all the contributions and using a
coloring argument.

The proof also holds for the case when the boundary coarse basis functions
θδ

i are not included in the coarse space. In this case, we set ūδ
i = 0, and use

that
‖wi‖2

L2(Ωδ
i
) ≤ CH2|u|2

H1(Ωδ,ext
i

)
.
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7.2 Additive Schwarz with Harmonic Overlap Methods

We next find upper bounds for the condition numbers of the preconditioners
with harmonic overlap.

Theorem 2.
κ(P̃ δ) ≤ C

1
H2

(1 +
H

δh
) (20)

and
κ(P̃ δ

hyb) ≤ κ(P̃ δ
C) ≤ C(1 +

H

δh
). (21)

Proof. The first inequality of (21) follows directly from the Lemma 3. We
next show the second inequality of (21). Let u ∈ Ṽδ, and let the ui be the
decomposition (17) introduced in Theorem 1. We next define ũi equals to ui

on (∪N
j=1N δ

j ) ∪ Γ δ
i ∪ ∂Ω, and discrete harmonic on O = ∪N

j=1Oδ
j . We recall

that O is a disconnected region and therefore discrete harmonic extension on
O can be obtained locally. Using that u ∈ Ṽδ, it is easy to see that

u =
N∑

i=0

ũi, and the ui ∈ Ṽδ
i .

Since the discrete harmonic extensions have the minimal semi-energy norm,
we have

a(ũi, ũi) ≤ a(ui, ui), i = 0, · · · , N,

and using the bound (18) in Theorem 1 we obtain

N∑
i=0

a(ũi, ũi) ≤
N∑

i=0

a(ui, ui) ≤ C(1 +
H

δh
)a(u, u).

The proof of (20) follows the same lines as above; i.e., we first introduce
a decomposition using the subspaces Vδ

i (see [8]), and then we modify this
decomposition on O to obtain a decomposition with functions on Ṽδ

i .

8 Numerical Experiments and Final Remarks

In this section, we present some numerical results for solving the Poisson’s
equation on the unit square with zero Dirichlet boundary conditions. We com-
pare the performance of the preconditioned Conjugate Gradient methods. As
preconditioners, we consider the ASHO and AS with PU coarse spaces (given
by P̃C and PC) and without coarse spaces (given by P̃ and P ), HybridHO
and Hybrid with PU coarse spaces (given by P̃hyb and Phyb), and the AS and
Hybrid with the standard non-nested coarse space; see [2,6]. In the numeri-
cal experiments below, we pay particular attention to the dependence on the
number of subdomains, mesh size, and the size of overlap.
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We first discuss a few implementation issues related to the precondi-
tioner based on harmonic overlap. In order to apply the ASHO/CG and
HybridHO/CG methods, it is necessary to force the solution to belong to
Ṽδ. To do so, a pre-CG-computation is needed, and it is done through the
formula (9). We note, by Lemma 2, that u = u∗ − w ∈ Ṽδ. Hence, we can
apply the regular PCG to the P̃ δ, P̃ δ

C , and P̃ δ
Hyb preconditioned systems.

The exact solution of the equation is u(x, y) = e5(x+y) sin(πx) sin(πy). All
subdomain problems are solved exactly. The stopping condition for CG is to
reduce the initial residual by a factor of 10−6. The iteration counts (iter),
condition numbers (cond), maximum (max) and minimum (min) eigenvalues
of the preconditioned matrix are summarized in Tables 1, 2, 3, 4, and 5.

¿From all the Tables below, it is clear that ASHO/CG (HybridHO/CG) is
always better than the classical AS/CG (Hybrid/CG) in terms of the condi-
tion numbers, while they have similar behavior in terms of iteration numbers.
This is an advantage because the AS based preconditioners can be modified
to ASHO ones with a large saving in communications on a parallel computer
with distributed memory. From Tables 1, 2, 6, and 7, it is clear that the hy-
brid versions with PU coarse spaces are always much better than the additive
versions with PU coarse spaces. This is an important result since the extra
computational cost of the hybrid ones over the additive ones is the calculation
of one residual per iteration. ¿From Tables 1 and 6 we can see the effective of
the PU coarse spaces. It is clear that the partition of unity coarse space makes
the algorithms scalable with respect to the number of subdomains. The hy-
brid formulations attains the asymptotic behavior of scalability faster. From
Table 3 we have the AS/CG and ASHO/CG without a coarse space. We can
see a dramatic grow of iterations and condition numbers and also the ASHO
is slightly better than AS preconditioner. From Tables 2 and 7 we can see
that the condition number of the preconditioners all grow linearly with the
size of the overlap. This is an important result since we can recover the same
linear behavior as obtained for regular coarse spaces on structured meshes
or non-nested coarse spaces. This results agree with the theory developed in
this paper. ¿From Tables 4 and 5 we compare the PU coarse spaces with
standard non-nested coarse spaces. It is clear that the hybrid versions using
the partition of unity coarse spaces can perform the same or better than
non-nested coarse spaces. This is an advantage since the partition of unity
is easy to implement for unstructured meshes and on parallel computers. a
coarse space. Finally we see, by comparing Tables 1 and 6, and by comparing
with Tables 2 and 7, that all the algorithms perform considerably better if
the boundary coarse functions are included in the coarse space.

Acknowledgements: The author is indebted to Xiao-Chuan Cai and
Maksymilian Dryja for helpful comments and suggestions to improve this
paper. The work was supported in part by the NSF grant CCR-9984404.
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Table 1. Two-level HybridHO/CG (Hybrid/CG) and ASHO/CG (AS/CG) using
PU coarse spaces for solving the Poisson’s equation on a 16 ∗ DOM × 16 ∗ DOM
mesh decomposed into DOM ×DOM subdomains with overlapping size δ = 2.

HybridHO/CG (Hybrid/CG)

DOM ×DOM iter cond max min

2× 2 13 (13) 5.89 (9.71) 2.19 (4.00) 0.372 (0.412)

4× 4 17 (18) 6.32 (11.4) 2.20 (4.00) 0.347 (0.345)

8× 8 18 (19) 6.48 (11.8) 2.20 (4.00) 0.340 (0.340)

16× 16 17 (19) 6.54 (11.9) 2.20 (4.00) 0.337 (0.340)

ASHO/CG (AS/CG)

DOM ×DOM iter cond max min

2× 2 14 (15) 7.71 (11.2) 2.52 (4.00) 0.326 (0.356)

4× 4 24 (24) 12.7 (16.6) 2.79 (4.00) 0.278 (0.241)

8× 8 30 (31) 16.3 (22.0) 2.85 (4.00) 0.175 (0.182)

16× 16 32 (34) 17.5 (24.0) 2.85 (4.00) 0.164 (0.166)

Table 2. Two-level HybridHO/CG (Hybrid/CG) and ASHO/CG (AS/CG) using
PU coarse spaces for solving the Poisson’s equation on a 256×256 mesh decomposed
into 16× 16 subdomains with different overlapping sizes δ.

HybridHO/CG (Hybrid/CG)

δ iter cond max min

1 25 (26) 12.7 (23.5) 2.17 (4.00) 0.170 (0.170)

2 17 (19) 6.54 (11.9) 2.20 (4.00) 0.337 (0.340)

3 15 (16) 4.53 (8.07) 2.24 (4.00) 0.495 (0.495)

4 13 (14) 3.48 (6.19) 2.26 (4.00) 0.649 (0.646)

ASHO/CG (AS/CG)

δ iter cond max min

1 47 (48) 36.5 (49.7) 2.94 (4.00) 0.081 (0.081)

2 32 (34) 17.5 (24.0) 2.85 (4.00) 0.164 (0.166)

3 25 (26) 11.0 (15.4) 2.76 (4.00) 0.251 (0.260)

4 21 (22) 7.67 (11.0) 2.68 (4.00) 0.351 (0.363)
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Table 3. One-level ASHO/CG (AS/CG) without coarse spaces for solving the
Poisson’s equation on a 16∗DOM×16∗DOM mesh decomposed into DOM×DOM
subdomains with overlapping sizes δ = 2.

ASHO/CG (AS/CG)

DOM ×DOM iter cond max min

2× 2 13 (14) 9.05 (16.4) 2.21 (4.00) 0.2455 (0.2445)

4× 4 25 (27) 28.7 (51.8) 2.22 (4.00) 0.0772 (0.0772)

8× 8 46 (48) 108. (195.) 2.22 (4.00) 0.0205 (0.0205)

16× 16 89 (93) 426. (768.) 2.22 (4.00) 0.0052 (0.0052)

Table 4. Two-level Hybrid/CG (AS/CG) using non-nested coarse spaces for solving
the Poisson’s equation on a 16∗DOM×16∗DOM mesh decomposed into DOM×
DOM subdomains with overlapping size δ = 2.

Hybrid/CG (AS/CG)

DOM ×DOM iter cond max min

2× 2 13 (14) 7.18 (7.26) 4.04 (4.00) 0.557 (0.557)

4× 4 18 (18) 7.32 (7.53) 3.98 (4.10) 0.554 (0.544)

8× 8 18 (18) 7.35 (7.62) 3.98 (4.12) 0.543 (0.541)

16× 16 18 (19) 7.40 (7.65) 3.99 (4.11) 0.540 (0.538)

Table 5. Two-level Hybrid/CG (AS/CG) using non-nested coarse spaces for solving
the Poisson’s equation on a 256 × 256 mesh decomposed into 16 × 16 subdomains
with different overlapping sizes δ.

Hybrid/CG (AS/CG)

δ iter cond max min

1 23 (23) 12.9 (13.0) 4.00 (4.02) 0.310 (0.310)

2 18 (19) 7.40 (7.65) 4.00 (4.11) 0.540 (0.538)

3 16 (17) 5.65 (6.06) 4.00 (4.24) 0.708 (0.700)

4 15 (16) 4.83 (5.41) 4.00 (4.38) 0.825 (0.809)
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