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SUMMARY

In this paper, we describe and analyse several block matrix iterative algorithms for solving a saddle point
linear system arising from the discretization of a linear-quadratic elliptic control problem with Neumann
boundary conditions. To ensure that the problem is well posed, a regularization term with a parameter �
is included. The first algorithm reduces the saddle point system to a symmetric positive definite Schur
complement system for the control variable and employs conjugate gradient (CG) acceleration, however,
double iteration is required (except in special cases). A preconditioner yielding a rate of convergence
independent of the mesh size h is described for � ⊂ R2 or R3, and a preconditioner independent of h and �
when �⊂ R2. Next, two algorithms avoiding double iteration are described using an augmented Lagrangian
formulation. One of these algorithms solves the augmented saddle point system employing MINRES
acceleration, while the other solves a symmetric positive definite reformulation of the augmented saddle
point system employing CG acceleration. For both algorithms, a symmetric positive definite preconditioner
is described yielding a rate of convergence independent of h. In addition to the above algorithms, two
heuristic algorithms are described, one a projected CG algorithm, and the other an indefinite block matrix
preconditioner employing GMRES acceleration. Rigorous convergence results, however, are not known
for the heuristic algorithms. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we study the convergence of several iterative methods for solving a linear-quadratic
elliptic optimal control problem with Neumann boundary conditions [1–5]. Such problems seek to
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determine a control function u(·) defined on the boundary �� of a domain �, to minimize some
performance functional J (y, u) of the form

J (y, u) ≡ 1
2 (‖y − ŷ‖2L2(�0)

+ �1‖u‖2L2(��)
+ �2‖u‖2H−1/2(��)

) (1)

where ŷ(.) is a given target function that we seek to match on �0 ⊂ � with the solution y(·) ∈ V f

to the elliptic problem in (2) with Neumann data u(·). Here, ‖u‖2
H−1/2(��)

denotes a dual Sobolev
norm that will be defined later, and V f denotes the affine space

V f ≡
{
(y, u) : −�y(x) + �y(x)= f (x) in � and

�y(x)
�n

= u(x) on ��

}
(2)

defined in terms of a forcing f (·) and parameter �>0. The parameters �1, �2 are chosen to
regularize the functional J (y, u) to yield a well posed problem. A typical choice is �1>0 and
small, with �2 = 0. However, we shall also consider �1 = 0 with �2>0, which yields a weaker
regularization term, and show that it has attractive computational properties.

The finite element discretization of an elliptic optimal control problem yields a saddle point linear
system with a coefficient matrix that is symmetric indefinite. There is extensive literature on saddle
point iterative methods, see [6], while specific preconditioners have been studied for discretizations
of optimal control problems [1, 2, 4, 7–12]. Our discussion focuses on the analysis of block matrix
algorithms based on conjugate gradient (CG) or MINRES acceleration [6, 11, 13–18, 20, 21]. The
first algorithm we consider requires double iteration and is based on the solution of a reduced Schur
complement system for the control variable u. We describe a preconditioner which yields a well-
conditioned system with respect to h, but dependent on �, for �⊂ R2 or R3, and a preconditioner
which yields a well-conditioned system with respect to h and � when �⊂ R2. The second family of
algorithms we study avoids double iteration, and employs an augmented Lagrangian reformulation
of the original saddle point system [22]. Motivated by [18–20], we describe a symmetric positive
definite preconditioner for the augmented system, employing MINRES acceleration, and a similar
preconditioner, motivated by [15, 21, 23], for a symmetric positive definite reformulation of the
augmented system, employing CG acceleration. In both the cases, the preconditioners yield a rate
of convergence independent of the mesh size h, but dependent on the regularization parameters.
We also describe a heuristic algorithm based on the projected gradient method (motivated by [24])
and a non-symmetric block matrix preconditioner based on GMRES acceleration.

This paper is organized as follows. In Section 2, we formulate the linear-quadratic elliptic
control problem with Neumann boundary conditions. Its weak formulation and finite element
discretization are described, and the block matrix form of the resulting saddle point system (with
Lagrange multiplier p(·)). In Section 3, we describe a reduced Schur complement system for the
control variable u (obtained by formal elimination of y and the Lagrange multiplier variable p).
The reduced system is symmetric positive definite, and we describe suitable preconditioners for
it, requiring double iteration. In Section 4, we describe an augmented Lagrangian reformulation
of the original saddle point system [22] to regularize the system without altering its solution. We
describe a symmetric positive definite block diagonal preconditioner for the augmented saddle
point system, for use with MINRES acceleration, and a similar preconditioner for a symmetric
positive definite reformulation of the augmented saddle point system, for use with CG acceleration.
The rates of convergence are shown to be independent of h, but dependent on the regularization
parameters. In Section 5, we outline alternative algorithms, one based on the projected gradient
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method (motivated by [24]), and another based on block matrix preconditioning of the original
saddle point system (using GMRES acceleration).

2. OPTIMAL CONTROL PROBLEM

Let �⊂ Rd denote a polygonal domain with boundary ��. We consider the problem of determining
a control function u(·) denoting the Neumann data on ��, so that the solution y(·) to the following
Neumann problem with forcing term f (·):

−�y(x) + � y(x) = f (x) in �

�y(x)
�n

= u(x) on ��
(3)

minimizes the following performance functional J (y, u):

J (y, u) = 1

2

(
‖y − ŷ‖2L2(�0)

+ �1 ‖u‖2
L2(��)

+ �2 ‖u‖2
H−1/2(��)

)
(4)

where ŷ(·) is a given target, and �1, �2 � 0 are regularization parameters. For simplicity, we shall
assume that �>0, and as a result our theoretical bounds will depend on �. The term ‖u‖H−1/2(��)

denotes a dual Sobolev norm

‖u‖H−1/2(��) ≡ sup
v∈H1/2(��)

∫
�� u v dsx

‖v‖H1/2(��)

where H1/2(��) =[L2(��), H1(��)]1/2 is a fractional index Sobolev space defined using Hilbert
scales, see [25]. An integral expression for ‖v‖H1/2(��) can be found in [25].

To obtain a weak formulation of the minimization of (4) within the constraint set (3), we
employ the function space H1(�) for y(·) and H−1/2(��) for u(·). Given f (·) ∈ L2(�), define
the constraint set V f ⊂V≡ H1(�) × H−1/2(��) as follows:

V f ≡{(y, u) ∈ V : A(y, w)= ( f, w) + 〈u, w〉, ∀w ∈ H1(�)} (5)

where the forms are defined by

A(u, w) ≡
∫

�
(∇u · ∇w + �uw) dx for u, w ∈ H1(�)

( f, w) ≡
∫

�
f (x)w(x) dx for w ∈ H1(�)

〈u, w〉 ≡
∫

��
u(x)w(x) dsx for u ∈ H−1/2(��), w ∈ H1/2(��)

(6)

The constrained minimization problem then seeks (y∗, u∗) ∈ Vf satisfying

J (y∗, u∗) = min
(y,u)∈Vf

J (y, u) (7)
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Remark 1
The regularization terms (�1/2)

∫
�� u2(x) dsx + (�2/2)‖u‖2

H−1/2(��)
must be chosen to modify

J (y, u) so that the minimization problem (7) is well posed. When f (·) = 0, the constraint set V0
will be a closed subspace of H1(�) × H−1/2(��), yet the minimization of J (y, u) within V0
will not be well posed for �1 = 0 and �2 = 0 (due to the L2(�0) term). To ensure well posedness
of (7), saddle point theory [26, 27] requires the functional J (., .) to be coercive within V0. When
�1>0 and �2 = 0, it can be shown that J (y, u) is coercive in V0 (though ‖u‖2

L2(��)
is not defined

for u ∈ H−1/2(��), it will be defined for finite element approximations). When �1 = 0 and �2>0,
elliptic regularity theory shows that J (y, u) is coercive within V0. This regularization term has
the advantage of involving a weaker norm.

To obtain a saddle point formulation of (7), introduce p(·) ∈ H1(�) as a Lagrange multiplier
function to enforce the constraints. Define the following Lagrangian functional L(·, ·, ·):

L(y, u, p) ≡ J (y, u) + (A(y, p) − ( f, p) − 〈u, p〉) (8)

for (y, u, p) ∈ H1(�) × H−1/2(��) × H1(�). Then, the constrained minimum (y∗, u∗) can be
obtained from the saddle point (y∗, u∗, p∗) ∈ H1(�) × H−1/2(��) × H1(�) of L(·, ·, ·)

sup
q

L(y∗, u∗, q) =L(y∗, u∗, p∗) = inf
(y,u)

L(y, u, p∗) (9)

Saddle point problem (9) will be well posed if an inf–sup condition holds (it will hold trivially
for this problem), and if J (., .) is coercive within the subspace V0, see [26, 27]. As mentioned
before, the coercivity of J (y, u) can be proved within the subspace V0 when �1 = 0 and �2>0,
or when �1>0 and �2 = 0, but not when �1 = 0 and �2 = 0. In a strict sense, the term ‖u‖L2(��)

will not be defined for u ∈ H−1/2(��). However, this term will be well defined for finite element
functions.

Remark 2
If ŷ(·) is sufficiently smooth, the functional J (y, u) = 1

2‖y− ŷ‖2
H1(�0)

can also be employed. When

�0 =�, the functional J (y, u) = 1
2‖y − ŷ‖2

H1(�)
can easily be shown to be coercive within V0

without additional regularization terms, and the saddle point problem will be well posed. Efficient
computational algorithms considered in this paper can easily be adapted to this case.

To obtain a finite element discretization of the constrained minimization problem, choose a quasi-
uniform triangulation �h(�) of�. Let Vh(�) ⊂ H1(�) denote a finite element space [28–30] defined
on �h(�), and let Vh(��) ⊂ L2(��) denote its restriction to ��. A finite element discretization of
(7) will seek (y∗

h , u
∗
h) ∈ Vh(�) × Vh(��) such that

J (y∗, u∗) = min
(yh ,uh)∈Vh, f

J (yh, uh) (10)

where the discrete constraint space Vh, f ⊂Vh ≡ Vh(�) × Vh(��) is defined by

Vh, f ={(yh, uh) ∈Vh : A(yh, wh) = ( f, wh) + 〈uh, wh〉, ∀wh ∈ Vh(�)} (11)

Let ph ∈ Vh(�) denote discrete Lagrange multiplier variables, and let {�1(x), . . . , �n(x)} and
{�1(x), . . . , �m(x)} denote standard nodal finite element basis for Vh(�) and Vh(��), respectively.
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Then, expanding each unknown yh , uh and ph with respect to the basis for each finite element
space

yh(x)=
n∑

i=1
yi�i (x), uh(x)=

m∑
j=1

u j� j (x), ph(x)=
n∑

l=1
pl�l(x) (12)

and substituting into the weak saddle point formulation yields the system:

⎡
⎢⎢⎣
M 0 AT

0 G BT

A B 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
y

u

p

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
f1

f2

f3

⎤
⎥⎥⎦ (13)

where the block submatrices M and A, and the matrix Q to be used later, are defined by

Mi j ≡
∫

�0

�i (x)� j (x) dx for 1� i, j � n

Ai j ≡
∫

�
(∇�i (x) · ∇� j (x) + ��i (x)� j (x)) dx for 1� i, j � n

Qi j ≡
∫

��
�i (x)� j (x) dsx for 1� i, j �m

(14)

and the discrete forcing are defined by (f1)i =
∫
�0

ŷ(x)�i (x) dx , for 1� i � n with f2 = 0, and
(f3)i =

∫
� f (x)�i (x) dx for 1� i � n. The matrix M of dimension n corresponds to a mass matrix

on�0, and the matrix A to the Neumann stiffness matrix. The matrix Q of dimensionm corresponds
to a lower dimensional mass matrix on ��. The matrix B will be defined in terms of Q, based on
the following ordering of nodal unknowns in y and p. Order the nodes in the interior of � prior to
the nodes on ��. Denote such block partitioned vectors as y= (yTI , y

T
B)T and p= (pTI ,p

T
B)T, and

define B of dimension n ×m as

B =
[

0

−Q

]
and BT =[0 −QT ] (15)

and define matrix G of dimension m, representing the regularizing terms as

G ≡ �1Q + �2(B
TA−1B) (16)

It will be shown later, that uT(BTA−1B)u is spectrally equivalent to ‖uh‖2H−1/2(��)
, when u is the

nodal vector associated with a finite element function uh(·).
Remark 3
The discrete performance functional has the representation

J (y,u) = 1

2

[
y

u

]T [M 0

0 G

][
y

u

]
−
[
y

u

]T [f1
f2

]
(17)
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after omission of a constant term, while the discretized constraints have the form

Ay + Bu= f3 (18)

The following properties can be easily verified for the matrices M and A. The matrix M will be
singular when �0 
=�. The matrix A will be symmetric and positive definite when �>0. However,
when �= 0, matrix A will be singular with A1= 0 for 1= (1, . . . , 1)T. In this case, we shall
require 1Tf3 = 0 for solvability of (13). Theory for saddle systems [27] requires the quadratic form
yTMy + uTGu to be positive definite for Ay + Bu= 0 and y 
= 0 and u 
= 0. This will ensure
solvability of (13) (provided 1Tf3 = 0 when A1= 0).

Remark 4
The role of regularization and the role of the parameters �i can be heuristically understood by
considering the following least-squares problem. Let H be a rectangular or singular matrix of
dimension m × n with singular value decomposition H =U�V T. Then, a minimum of the least-
squares functional F(x)= 1

2 ‖Hx − b‖2 will be given by x∗ = H†b= V�†UTb. If H has a non-
trivial null space, there will be an affine space of minima. Indeed, if N is a matrix of dimension n × k
whose columns form a basis for the null space of H , with Range(N ) =Kernel(H), then a general
minimum of F(x) will be x∗ + Nb for any vector b∈ Rk . If we employ partial regularization and
define F̃(x)= F(x)+(�/2)‖PNx‖2 where PN denotes the Euclidean orthogonal projection onto the
null space of H , then the minimum of F̃(·) can be verified to be unique and occur at x∗ = H†b for
any �>0. If, however, a regularization term of the form (�/2)‖x‖2 is employed, and the minimum
of F̂(x)= F(x) + (�/2)‖x‖2 is sought, this will yield the linear system (HTH + �I )x= HTb.
Using, the singular value decomposition of H , we may obtain the following representation of the
unique solution to the regularized problem x= V (�T� + � I )−1�TUTb. The i th diagonal entry of
(�T�+� I )−1�T will be �i/(�2i +�), so that if �i>0, then �i/(�2i +�) → 1/�i as � → 0+, while
if �i = 0, then �i/(�2i + �) = 0. Thus, x → x∗ = H†b as � → 0+. In our applications, matrix H
will correspond to (BTA−TMA−1B), while x will correspond to u and F(.) to J (.).

Remark 5
The choice of parameter �>0 will typically be problem dependent. When matrix H arises from
the discretization of a well-posed problem, the singular values of H will be bounded away from
0. In this case, if � is chosen appropriately smaller than the smallest non-zero singular value of
H , the regularized solution will approach the pseudo-inverse solution. However, when matrix H
arises from the discretization of an ill-posed problem, its singular values will cluster around 0.
In this case, care must be exercised in the choice of regularization parameter �>0, to balance
the accuracy of the modes associated with the large singular values, and to dampen the modes
associated with the very small singular values.

Remark 6
In applications, alternate performance functionals may be employed, which measure the difference
between y(·) and ŷ(·) at different subregions of �. For instance, given nodes z1, . . . , zr ∈ �, we
may minimize the distance between y(·) and ŷ(·) at these points:

J (y, u) = 1

2

(
r∑

l = 1
|y(zl) − ŷ(zl)|2 + �1‖u‖2L2(��)

+ �2‖u‖2H−1/2(��)

)
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This performance functional requires the measurement of y(x) − ŷ(x) at the r discrete nodes.
We must choose either �1>0 or �2>0 to regularize the problem. Another performance functional,
described below, requires the measurement of y(x) − ŷ(x) only on ��

J (y, u) = 1

2

(∫
��

|y(x) − ŷ(x)|2 dsx + �1‖u‖2L2(��)
+ �2‖u‖2H−1/2(��)

)
(19)

We shall obtain M = blockdiag(0, Q) and require �1>0 or �2>0 to regularize the problem.

3. PRECONDITIONED SCHUR COMPLEMENT ALGORITHMS

The first algorithm we consider for solving (13) is based on the solution of a reduced system
for the discrete control u. We shall assume that �>0 and that G>0. Then, formally solving the
third block row in (13) will yield y= A−1(f3 − Bu). Solving the first block row in (13) will yield
p= A−T(f1 − MA−1f3 + MA−1Bu). Substituting these into the second block row of (13) will
yield the following reduced Schur complement system for u:

(G + BTA−TMA−1B)u= f2 − BTA−Tf1 + BTA−TMA−1f3 (20)

The Schur complement matrix (G + BTA−TMA−1B) will be symmetric and positive definite of
dimension m, and system (20) can be solved using a PCG algorithm. Each matrix vector product
with G + BTA−TMA−1B will require the action of A−1 twice per iteration (this can be computed
iteratively, resulting in a double iteration).Once u has been determined by solution of (20), we
obtain y= A−1(f3− Bu) and p= A−T(f1−MA−1f3+MA−1Bu). The following result shows that
if the parameters �1>0 or �2>0 are held fixed independent of h, then matrix G will be spectrally
equivalent to the Schur complement (G + BTA−TMA−1B), and can be used as a preconditioner.
Unfortunately, in practice �i may be small (and possibly dependent on h), and for such a case
alternative preconditioners will be described later in Remark 7 and Subsection 3.1.

Lemma 3.1
Suppose that �1>0 and �2 = 0 or �1 = 0 and �2>0. Then, there exists �, c̃>0 independent of h,
�1, and �2 such that:

(uTGu) �uT(G + BTA−TMA−1B)u� (1 + c)(uTGu) ∀u∈ Rm (21)

where c= (�/�1)c̃ when �2 = 0, and c= (�/�2) when �1 = 0.

Proof
The lower bound follows trivially since (BTA−TMA−1B) � 0. To obtain the upper bound, employ
Poincare–Friedrichs’ inequality which yields �>0 independent of h such that yTMy� �yTAy.
Substituting this, yields

(uTBTA−TMA−1Bu) � �(uTBTA−TAA−1Bu) = �(uTBTA−1Bu)

When �1 = 0, matrix G = �2 (BTA−1B) and the desired bound will hold trivially for c= (�/�2).
When �2 = 0, employ the block partition y= (yTI , y

T
B)T to obtain

BTA−1B =
[

0

−Q

]T [ AI I AI B

AT
I B ABB

]−1 [
0

−Q

]
= QT(ABB − AT

I B A
−1
I I AI B)−1Q
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The matrix S = (ABB − AT
I B A

−1
I I AI B) denotes the discrete Dirichlet to Neumann map, and is

known to be symmetric and positive (when �>0), see [31]. Let uh , wh ∈ Vh(��) denote finite
element functions associated with u and w, respectively. Then, using properties of S yields:

uTBTA−1Bu=uTQTS−1Qu= ‖S−1/2Qu‖2

=
(
sup
v∈Rm

(S−1/2Qu, v)
‖v‖

)2

=
(
sup
v∈Rm

(Qu, S−1/2v)
‖v‖

)2

=
(

sup
w∈Rm

(Qu,w)

‖S1/2w‖
)2

� c̃

(
sup

wh∈Vh(��)

〈uh, wh〉
‖wh‖1/2,��

)2

� c̃

(
sup

w∈H1/2(��)

〈uh, w〉
‖w‖1/2,��

)2

= c̃(‖uh‖−1/2,��)2

� c̃(‖uh‖0,��)2

= c̃uTQu (22)

where c̃ denotes a parameter independent of h, which bounds the energy associated with S in terms
of the fractional Sobolev norm H1/2(��). This equivalence between ‖S1/2w‖ and ‖wh‖1/2,�� is a
standard result in domain decomposition literature [31]. We used (·, ·) to denote the Euclidean inner
product with norm ‖ · ‖, and 〈·, ·〉 to denote the duality pairing between H1/2(��) and H−1/2(��)

(pivoted using the L2(��) inner product), and uh(·) to denote the finite element function associated
with a nodal vector u. We also employed the definition of dual norms of Sobolev spaces and the
property that ‖u‖−1/2,�� � ‖u‖0,�� when u ∈ L2(��). This yields the upper bound c= (�c̃/�1)

when G = �1Q. Importantly, under additional assumptions uTQTS−1Qu will be equivalent to
‖uh‖2H−1/2(��)

, see Remark 7. �

Remark 7
The first inequality in (22) will also be an equivalence [31]. The second inequality in (22) will
be an equivalence too by considering wh as the L2(��) projection of w on Vh(��) and by using
the stability of the L2(��) projection in the H1/2(��) norm [31]. Henceforth, let � denote an
equivalence independent of h and �i . Thus, uTQTS−1Qu� ‖uh‖2H−1/2(��)

. The upper bound in

Lemma 3.1 deteriorates as max{�1, �2} → 0+. As a result, G may not be a uniformly effective
preconditioner for (G + BTA−TMA−1B) as �i → 0+. The spectral properties of the Schur
complement (G+BTA−TMA−1B) can differ significantly from those of G and (BTA−TMA−1B),
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depending on theweights �i . For instance, when �min(G) � �max(BTA−TMA−1B) it can be verified
that cond(G,G+ BTA−TMA−1B) � 2, so that G will be an effective preconditioner. On the other
hand, if M is non-singular and �max(G) � �min(BTA−TMA−1B) then

cond(BTA−TMA−1B,G + BTA−TMA−1B) � 2

so that (BTA−TMA−1B) will be a more effective preconditioner. Some preconditioners which are
uniformly effective with respect to �1, �2 and h will be considered in Section 3.1.

Remark 8
When M = 0, computing the action of G+ BTA−TMA−1B on a vector will be trivial. In this case,
the Schur complement system for u can be solved without double iteration, retaining a convergence
rate independent of h. If matrix M is of low rank l, then matrix BTA−TMA−1B can be assembled
explicitly (at the cost of l matrix products with A), and the Sherman–Morrison–Woodbury formula
can be employed to compute the solution to the perturbed system G + BTA−TMA−1B. For
instance, if BTA−TMA−1B =UUT, then:

(G +UUT)−1 =G−1 + G−1U (I +UTG−1U )−1UTG−1

where we use that (I + UTG−1U ) is invertible since G is symmetric positive definite. Such an
approach will be efficient only if l is small, since we will need to solve l systems with coefficient
matrix A in a preprocessing step.

Remark 9
When matrix M is non-singular and its inverse M−1 is available, double iteration may also be
avoided as follows. Suppose �1>0. Define l= − A−TMA−1Bu. Then, the following extended
block matrix system is easily seen to be equivalent to (20):[

ATM−1A B

BT −G

][
l

u

]
=
[
0

g

]
(23)

where the right-hand side g= − f2 + BTA−Tf1 − BTA−TMA−1f3 can be computed at an initial
overhead cost (requiring the action of A−1). The above symmetric indefinite system can be trans-
formed into a symmetric positive definite system, using a technique described in [23] (without
requiring the action of A−1) as follows. Suppose A0 is a matrix spectrally equivalent to A (such
as a domain decomposition preconditioner), and M0 = hd I a suitably scaled matrix spectrally
equivalent to M , and G0 = �1 hd−1 I also a suitably scaled matrix equivalent to G, such that
AT
0M

−1
0 A0 � ATM−1A (in the sense of quadratic forms). Then, system (23) can be transformed

into the following symmetric and positive definite system, see [15, 21, 23]:⎡
⎣ KK−1

0 K − K (KK−1
0 − I )B

BT(K−1
0 K − I ) G + BTK−1

0 B

⎤
⎦
[
l

u

]
=
[
0

g

]
(24)

where K = ATM−1A and K0 = AT
0M

−1
0 A0. This system can be solved by a PCG algorithm, using

a block preconditioner blockdiag(K0, T0), where K0 is as in the preceding, and T0 is spectrally
equivalent to G0 + BTK−1

0 B. In the special case when J (y, u) = 1
2A(y− ŷ, y− ŷ), matrix A will

replace M in (23) and we will obtain the simplification ATM−1A= A, K0 = A0, and T0 =G0. We
omit further details.
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3.1. A uniformly effective preconditioner for C ≡ (G + BTA−TMA−1B)

The task of finding an effective preconditioner for the Schur complement C is complicated by
the presence of the parameters �1 � 0 and �2 � 0. As noted before, when �1 or �2 is large (or
equivalently, when �min(G) is sufficiently large), G will be an effective preconditioner for C ,
while when both �1 and �2 are small (or equivalently, when �max(G) is sufficiently small), and
when M is non-singular, matrix (BTA−TMA−1B) will be an effective preconditioner for C . For
intermediate values of �i , however, neither limiting approximation may be effective. In the special
case when �⊂ R2, we shall indicate a preconditioner uniformly effective with respect to �1>0 or
�2>0. The general case will be considered in a subsequent paper.

The preconditioners that we shall formulate for C will be based on spectrally equivalent rep-
resentations of G and (BTA−TMA−1B), for special choices of the matrix M . Lemma 3.2 below
describes uniform spectral equivalences between G, (B A−1B), (BTA−TMA−1B) and one or more
of the matrices Q, S−1, S−2 or S−3, where S = (ABB−AT

I B A
−1
I I AI B) denotes the discrete Dirichlet

to Neumann map. Properties of S have been studied extensively in the domain decomposition
literature [31].
Lemma 3.2
Let �⊂ Rd be a smooth convex domain. Then, the following equivalences will hold:

Q � hd−1 I

(BTA−1B) � QTS−1Q

(BTA−TMA−1B) � QTS−1QS−1Q when M = blockdiag(0, Q)

(BTA−TMA−1B) � QTS−1QTS−1QS−1Q when M � hd I

(25)

with coefficients independent of h, �1 and �2, where S = (ABB − AT
I B A

−1
I I AI B).

Proof
The first equivalence is a Gram matrix property on ��, while the second equivalence follows from
BTA−1B = QS−1Q, proved in Lemma 3.1. To prove the third equivalence, use

A−1 =
[
A−1
I I + A−1

I I AI B S
−1AI B AI B A

−1
I I −A−1

I I AI B S
−1

−S−1AT
I B A

−1
I I S−1

]

Employing this and using the block matrix structure of B yields

A−1Bu=
[−A−1

I I AI B S
−1Qu

S−1Qu

]

Substituting this into (BTA−TMA−1B) with M = blockdiag(0, Q) yields

BTA−TMA−1B = QS−1QS−1Q

and the third equivalence follows. To prove the fourth equivalence, let uh denote a finite element
control function defined on �� with associated nodal vector u. Let vh denote the Dirichlet data
associated with the Neumann data uh , i.e. with associated nodal vector v= S−1Qu. When M � hd I
is the mass matrix on �, then uT(BTA−1MA−1B)u will be equivalent to ‖Evh‖2L2(�)

, where Evh
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denotes the discrete harmonic extension of the Dirichlet boundary data vh into � with associated
nodal vector A−1Bu. When � is convex and smooth, H2(�) elliptic regularity will hold for (3)
and a result from [32] shows that ‖Evh‖2L2(�)

is spectrally equivalent to ‖vh‖2H−1/2(��)
. In matrix

terms, the nodal vector associated with the discrete Dirichlet data vh will be v= S−1Qu, given
by the discrete Neumann to Dirichlet map. For vh ∈ H−1/2(��), it will hold that ‖vh‖2H−1/2(��)

is spectrally equivalent to vTQTS−1Qv, in turn equivalent to uTQTS−1QTS−1QS−1Qu and the
fourth equivalence follows. �

As an immediate corollary, we obtain the following uniform equivalences.

Corollary 3.3
When � is a smooth convex domain, the following equivalences will hold:

C � �1 h
d−1 I + �2 Q

TS−1Q + QTS−1QS−1Q when M = blockdiag(0, Q)

C � �1h
d−1 I + �2 Q

TS−1Q + QTS−1QTS−1QS−1Q when M � hd I
(26)

Proof
Follows from Lemma 3.2. �

Remark 10
When �� is non-smooth, elliptic regularity results will be weaker and the bounds in Lemma 3.2
may involve poly-logarithmic terms in h. However, if the Neumann control is applied only on a
smooth subsegment �⊂ ��, the bounds will be independent of h.

3.1.1. A fast Fourier transform (FFT)-based preconditioner for C. When�⊂ R2, matrix S (hence,
Q, S−1, etc.) will have an approximate spectral representation involving the discrete Fourier
transform U . The Dirichlet to Neumann map S will be spectrally equivalent to an appropriately
scaled square root of the discretization of the Laplace–Beltrami operator LB = −d2/ds2x on ��, see
[31]. On �� and for quasi-uniform triangulation on ��, the discretization of the Laplace–Beltrami
operator with periodic boundary conditions will yield a matrix spectrally equivalent to the circulant
matrix H0 = h−1 circ(−1, 2,−1), since �� is a loop. Matrix H0 will be diagonalized by the
discrete Fourier transform U , yielding H0 =U�H0U

T, where �H0 is a diagonal matrix whose
entries can be computed analytically [31]. If Q denotes the mass matrix on ��, then it will
be spectrally equivalent to the circulant matrix Q0 ≡ (h/6)circ(1, 4, 1) and diagonalized by the
discrete Fourier transform, with Q0 =U�Q0U

T. An analytical expression can be derived for the
eigenvalues �Q0 , where (h/3)� (�Q0)i � h. Based on the above expressions, we may employ
the representations

S0 � Q1/2
0 (Q−1/2

0 H0Q
−1/2
0 )1/2Q1/2

0 ≡U�S0U
T =U (�1/4

Q0
�1/2

H0
�1/4

Q0
)UT

Sr0 �U�r
S0U

T �U (�r/2
Q0

�r/2
H0

)UT

Q �U�Q0U
T � hU IUT
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The following approximate representations will hold for C �C0:

C0 �U (�1�Q0 + �2�
2
Q0

�−1
S0

+ �3
Q0

�−2
S0

)UT when M = blockdiag(0, Q)

C0 �U (�1�Q0 + �2�
2
Q0

�−1
S0

+ �4
Q0

�−3
S0

)UT when M � h2 I
(27)

The eigenvalues of C−1
0 can be found analytically, and the action of C−1

0 can be computed at low
cost using FFTs. Such preconditioners, however, are not easily generalized to �⊂ R3.

3.1.2. An algebraic preconditioner for S−1. We also describe an algebraic preconditioner
S̃−1 for S−1, applicable when �⊂ R2 or R3. It can precondition G = �2 (QTS−1Q). If
G � (BTA−TMA−1B), we may also apply it repeatedly to precondition C � QTS−1QS−1Q or
C � QTS−1QTS−1QS−1Q, depending on whether M = blockdiag(0, Q) or M � hd I . This pre-
conditioner for S−1 is based on a subregion (�\D) ⊂ � surrounding ��. Let D ⊂ � be a subregion
with dist(�D, ��) � �>0, independent of h. Let Ã denote the submatrix of A

Ã=
[
ÃI I AI B

AT
I B ABB

]

corresponding to a discretization of the elliptic equation on �\D with Neumann boundary
conditions on �� and zero Dirichlet boundary conditions on �D. By construction, the matrix
S̃ = (ABB − AT

I B Ã
−1
I I AI B) will be spectrally equivalent to S = (ABB − AT

I B A
−1
I I AI B), since the

Schur complement energy of the discrete harmonic extension into �\D will be equivalent to the
Schur complement energy of the discrete harmonic extension into � (as both will be equivalent
to the H1/2(��) norm square of its boundary data). Applying S̃ will require an exact solver for
ÃI I (such as a band solver, if �>0 is small).

4. PRECONDITIONED-AUGMENTED LAGRANGIAN ALGORITHMS

The second category of algorithms we consider for solving system (13) will avoid double iteration,
and correspond to saddle point preconditioners for an augmented Lagrangian reformulation [22] of
the original system. Traditional saddle point algorithms, such as Uzawa and block preconditioners
[14, 15, 18–21, 23], may not be directly applicable to system (13) since matrix M can possibly
be singular. Instead, in the augmented Lagrangian system, the block submatrix blockdiag(M,G)

is transformed into a symmetric positive definite submatrix, so that traditional saddle point meth-
ods can be applied. We shall describe preconditioners employing MINRES [14, 18–20] and CG
acceleration [15, 21, 23].

Augmenting the Lagrangian [22] is a method suitable for regularizing a saddle point system
without altering its solution. Formally, the augmented Lagrangian method seeks the minimum of
an augmented energy functional Jaug(y,u)

Jaug(y,u) ≡ J (y,u) + 	

2
‖Ay + Bu − f3‖2A−1

0

= J (y,u) + 	

2
(Ay + Bu − f3)TA

−1
0 (Ay + Bu − f3)
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subject to the same constraint Ay+Bu−f3 = 0. Here, matrix A0 will be assumed to be a symmetric
positive definite matrix of dimension n, spectrally equivalent to A, while 	 � 0 is a parameter. By
construction, the term ‖Ay+ Bu− f3‖2A−1

0
will be zero in the constraint set, so that the solution of

the constrained minimization problem is unaltered. Defining an augmented Lagrangian functional
Laug(y,u, p):

Laug(y,u, p) = Jaug(y,u) + pT(Ay + Bu − f3) (28)

and seeking its saddle point will yield the following modified saddle point system:⎡
⎢⎢⎢⎣
M + 	ATA−1

0 A 	ATA−1
0 B AT

	BTA−1
0 A G + 	BTA−1

0 B BT

A B 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣
y

u

p

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣
f1 + 	ATA−1

0 f3

f2 + 	BTA−1
0 f3

f3

⎤
⎥⎥⎥⎦ (29)

The above system can alternatively be obtained from (13) by multiplying the third block row of
(13) by 	ATA−1

0 and adding it to the first block row, and multiplying the third block row of (13)
by 	BTA−1

0 and adding it to the second block row.
To simplify our discussion, we shall employ the notation:

K ≡
⎡
⎣M + 	ATA−1

0 A 	ATA−1
0 B

	BTA−1
0 A G + 	BTA−1

0 B

⎤
⎦ , NT ≡

[
AT

BT

]
, w≡

[
y

u

]
(30)

Using this, the augmented saddle point system can be represented compactly as[
K NT

N 0

][
w

p

]
=
[
f

g

]
(31)

where f= ((f1+	ATA−1
0 f3)T, (f2+	BTA−1

0 f3)T)T and g= f3. This coefficient matrix is symmetric
indefinite, and we shall consider two algorithms for solving it using a block diagonal preconditioner
of the form blockdiag(K0, T0), where K0 and T0 are matrices spectrally equivalent to K and
T = NK−1NT, respectively.

Our first augmented Lagrangian method will solve (31) using the MINRES algorithm with
blockdiag(K0, T0) as a preconditioner. Our second method will transform (31) into a symmetric
positive definite system [23], and solve it using the CG algorithm. Analysis of system (31) with
preconditioner blockdiag(K0, T0) shows that effective MINRES or CG algorithms can be for-
mulated, provided K0 and T0 are spectrally equivalent to K and T = NK−1NT, respectively,
[14, 15, 18–21, 23]. We now consider blockdiag(ATA−1

0 A,G) as a preconditioner for K .

Lemma 4.1
Let G be positive definite, and suppose the following hold.

1. Let yTMy� �1 (yTATA−1
0 Ay) for some �1>0 independent of h.

2. Let vT(BTA−1
0 B)v� �2(v

TGv) for some �2>0 independent of h.

3. Let �∗ ≡ 1
2 ((2 + �2) −

√
�22 + 4�2) and �∗∗ ≡ 1

2 ((2 + �1 + �2) +√
(�1 − �2)2 + 4�2).
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Then, for (yT,uT)T 
= 0, the following bounds will hold:

�∗ �

[
y

u

]T⎡⎣M + ATA−1
0 A ATA−1

0 B

BTA−1
0 A G + BTA−1

0 B

⎤
⎦
[
y

u

]

[
y

u

]T [
ATA−1

0 A 0

0 G

][
y

u

] � �∗∗ (32)

Proof
Expand the quadratic form associated with the block matrix

[
y

u

]T⎡⎣M + ATA−1
0 A ATA−1

0 B

BTA−1
0 A G + BTA−1

0 B

⎤
⎦[y

u

]

= (yTMy + yTATA−1
0 Ay + uTGu + uTBTA−1

0 Bu) + 2yTATA−1
0 Bu (33)

and employ Schwarz’s inequality, using the identity 2ab� 
a2 + b2/
 for 0<
<∞

2|yTATA−1
0 Bu| � 
yTATA−1

0 Ay + 1



uTBTA−1

0 Bu (34)

To obtain an upper bound, substitute (34) into (33) and choose 


(yTMy + yTATA−1
0 Ay + uTGu + uTBTA−1

0 Bu) + 2yTATA−1
0 Bu

� (1 + �1 + 
)yTATA−1
0 Ay +

(
1 + �2 + �2




)
uTGu� �∗∗(yTATA−1

0 Ay + uTGu)

by equating �∗∗ ≡ (1 + �1 + 
) = (1 + �2 + �2/
). To obtain a lower bound, expand (33) as
follows:

(yTMy + yTATA−1
0 Ay + uTGu + uTBTA−1

0 Bu) + 2yTATA−1
0 Bu

� (yTATA−1
0 Ay + uTGu + uTBTA−1

0 Bu) − 2|yTATA−1
0 Bu|

� (yTATA−1
0 Ay + uTGu + uTBTA−1

0 Bu) − (1 − 
̃)(yTATA−1
0 Ay)

− 1

1 − 
̃
uTBTA−1

0 Bu

� 
̃(yTATA−1
0 Ay) + uTGu − 
̃

1 − 
̃
uTBTA−1

0 Bu
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� 
̃(yTATA−1
0 Ay) + 1 − (1 + �2)
̃

1 − 
̃
uTGu

� �∗(yTATA−1
0 Ay + uTGu)

where we require 0<
̃<1 and such that �∗ ≡ 
̃ = (1 − (1 + �2)
̃)/(1 − 
̃). �

Remark 11
The upper bound �∗∗ in (32) can be replaced by max{2+ �1, 2�2 + 1}. This simpler upper bound
can be derived by substituting (34) into (33) and choosing 
 = 1. Similarly, the lower bound �∗ in
(32) can be replaced by min{1/(2 + 2�2), (1 + �2)/(2�2 + 1)}. This can be derived by choosing

̃ = 1/(2 + 2�2). Replacing �∗∗ by max{2 + �1, 2�2 + 1} will lead to a more tractable expression
for the optimal parameter 	opt which minimizes the condition number in (32), when a scaling

parameter 	>0 is introduced in the augmented Lagrangian formulation and A−1
0 is replaced by

	A−1
0 in Lemma 4.1. If �1, �2 are as defined earlier (corresponding to the choice 	 = 1), then the

following bounds will hold when (yT, uT)T 
= 0:

�∗(	) �

[
y

u

]T⎡⎣M + 	ATA−1
0 A 	ATA−1

0 B

	BTA−1
0 A G + 	BTA−1

0 B

⎤
⎦
[
y

u

]

[
y

u

]T [
	ATA−1

0 A 0

0 G

][
y

u

] � max

{
2 + �1

	
, 2�2	 + 1

}
(35)

where �∗(	) = 1
2 ((2 + �2	) −

√
�22	

2 + 4�2	). Denote the condition number in (35) by �(	)

�(	) ≡ max{2 + (�1/	), 2�2	 + 1}
�∗(	)

The scaling parameter 	 = 	opt can be chosen to minimize the above condition number. It can be
verified easily that (2 + �1/	)/�∗(	) intersects (2�2	 + 1)/�∗(	) when 	 = 	∗

	∗ = 1 +√
1 + 8�1�2
4�2

Furthermore, it can be verified that (2�2	 + 1)/�∗(	) is monotonically increasing for 	 � 	∗.
Consequently, the optimal choice 	opt of parameter 	 will occur for 	 ∈ (0, 	∗]

�(	opt) = min
0<	�	∗

�(	)

An explicit expression can be derived for 	opt (using Maple or Mathematica), however, we shall
omit the resulting expression, since it is lengthy.
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Remark 12
The limiting case 	= 0 yields the original saddle point system (13). If M is non-singular,
then choosing a preconditioner K0 for K = blockdiag(M,G) will be simple. If �0 = �, we
may choose K0 = blockdiag(M0,G0), where M0 and G0 are spectrally equivalent to M and G,
respectively.

Remark 13
In applications to control system (29), matrix A0 can be chosen as a preconditioner spectrally
equivalent to A. Then, A−1

0 will be spectrally equivalent to A−1, and ATA−1
0 A will be spectrally

equivalent to A. An application of Poincare–Freidrichs inequality will yield the bound assumed
in Lemma 4.1 with �1 independent of h. Furthermore, when A0 is spectrally equivalent to A, it
will also hold that BA−1

0 BT is spectrally equivalent to QTS−1Q, and the arguments employed in
Lemma 3.1 will yield the bound assumed in Lemma 4.1 with �2 independent of h.

We shall consider two approaches which employ a preconditioner K0 for K to precondition the
augmented Lagrangian saddle point system. The first approach, described in Section 4.1, solves the
augmented saddle point system using the MINRES algorithm with a block diagonal preconditioner.
The second approach, described in Section 4.2, reformulates the augmented saddle point system
as a symmetric positive definite system and solves it using a CG algorithm.

4.1. Minimum residual acceleration

Consider now the solution of system (31) for 	>0, with K , N , w, p defined by (30). Since
system (31) is symmetric but indefinite, the CG algorithm cannot be employed to solve it.
Instead, our first method employs the MINRES algorithm [17, 18] for symmetric indefinite
systems.

Typically, the rate of convergence of the MINRES algorithm to solve a saddle point system
depends on the intervals [−d,−c] and [a, b] containing the negative and positive eigenvalues
of the preconditioned system [6, 15, 18–21]. Theoretical convergence bounds for the MINRES
algorithm are generally weaker than that for the CG algorithm, however, its rate of conver-
gence will be independent of a parameter provided the intervals containing the eigenvalues
are fixed and bounded away from zero, independent of the same parameter. In particular, if a
symmetric positive definite preconditioner of the form blockdiag(K0, T0) is employed to pre-
condition (31), and K0 and T0 are spectrally equivalent to K and T = NK−1NT, respectively,
independent of a parameter, then the rate of convergence of the preconditioned MINRES algo-
rithm will also be independent of those parameters [15, 16, 18–21, 33]. The next result considers
K0 = blockdiag(	A0,G0) as a preconditioner for K and a matrix A∗ spectrally equivalent to
T0 = 	−1A + BG−1BT.

Lemma 4.2
Suppose the following conditions hold.

1. Let A0 be spectrally equivalent to A, independent of h.
2. Let G0 be spectrally equivalent to G, independent of h.
3. Let A∗ be spectrally equivalent to 	−1A + BG−1BT, independent of h.

Then, the rate of convergence of the MINRES algorithm to solve (31) using the preconditioner
L0 = blockdiag(	A0,G0, A∗) will be independent of h (but not �1, �2) for 	>0.
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Proof
When A0 is spectrally equivalent to A, an application of Lemma 4.1 will yield �1 and �2 to be
independent of h, and blockdiag(	ATA−1

0 A,G) to be spectrally equivalent to K , independent of
h. Matrix ATA−1

0 A will be spectrally equivalent to A and to A0, thus, replacing ATA−1
0 A by

A0 and G by G0 will yield that K0 = blockdiag(	A0,G0) to be spectrally equivalent to K , in-
dependent of h. Spectral equivalence between K and K0 immediately yields spectral equivalence
between T = NK−1NT and NK−1

0 NT. Substituting K0 = blockdiag(	A0,G0) into NK−1
0 NT

yields 	−1ATA−1
0 A + BTG−1

0 B, which is spectrally equivalent to 	−1A + BTG−1B. Analysis
of saddle point algorithms show that the rate of convergence of iterative algorithms to solve a
system of form (31) using a preconditioner blockdiag(K0, T0), will be independent of a param-
eter, provided K0 and T0 are spectrally equivalent to K and T = NK−1NT, independent of that
parameter. Thus, it will be sufficient to require A∗ to be spectrally equivalent to 	−1A+ BTG−1B.

�

Remark 14
Each application L−1

0 of L0 = blockdiag(	A0,G0, A∗) will require the action of A−1
0 once, G−1

0
once and A−1∗ once. Each multiplication by K can be computed using

K

[
y

u

]
=
[
My

Gu

]
+
[
AT

BT

]
A−1
0 (ATy + Bu) (36)

This will require the action of A−1
0 once.

Remark 15
Matrix A∗ should be spectrally equivalent to 	−1A + BTG−1B. When G = �1Q, this requires
matrix A∗ to be spectrally equivalent to

A∗ � 	−1

⎡
⎣ AI I AI B

AT
I B

	

�1
Q + ABB

⎤
⎦

This will correspond to a discretization of a scaled Laplacian with Robin boundary conditions on
��. In this case, any suitable Robin preconditioner A∗ (using domain decomposition, for instance)
can be employed. When G = �2QTS−1Q, matrix A∗ will be required to satisfy

A∗ � 	−1

[
AI I AI B

AT
I B ABB

]
+ �−1

2

[
0 0

0 S

]
= 	−1

⎡
⎣ AI I AI B

AT
I B

	

�2
S + ABB

⎤
⎦

where S = (ABB − AT
I B A

−1
I I AI B). Since AT = A>0, it will hold that ST = S>0. The following

algebraic property can also be shown to hold (in the sense of quadratic forms):[
0 0

0 0

]
�
[
0 0

0 S

]
�
[
AI I AI B

AT
I B ABB

]
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As a result, it will hold that

	−1

[
AI I AI B

AT
I B ABB

]
�	−1

⎡
⎣ AI I AI B

AT
I B ABB + 	

�2
S

⎤
⎦�(	−1 + �−1

2 )

[
AI I AI B

AT
I B ABB

]

Thus, it is sufficient that A∗ be spectrally equivalent to the Neumann matrix A.

4.2. Conjugate gradient acceleration

The CG method cannot be applied directly to solve system (31), since it is symmetric indefinite.
However, it is shown in [23] that a general saddle point system of the form (31) can be transformed
into an equivalent symmetric positive definite system. This resulting system may be solved by the
CG method. We shall describe the transformation below. Let K0 denote a symmetric positive
definite preconditioner for K satisfying

�1K�K0��2K , for 0<�1��2<1

independent of h. Then, a symmetric positive definite system equivalent to (31) is⎡
⎣KTK−1

0 K − K (KTK−1
0 − I )NT

N (K−1
0 K − I ) NK−1

0 NT

⎤
⎦
[
w

p

]
=
⎡
⎣(KTK−1

0 − I )f

NK−1
0 f − g

⎤
⎦ (37)

The coefficient matrix L in (37) can be shown to be spectrally equivalent to L0 below

L =
⎡
⎣KTK−1

0 K − K (KTK−1
0 − I )NT

N (K−1
0 K − I ) NK−1

0 NT

⎤
⎦ and L0 =

[
K0 0

0 T0

]
(38)

where T0 is any matrix spectrally equivalent to T = NK−1NT, see [15, 21, 23]. We may thus obtain
the solution to (31) by solving (37) employing the CG method, with L0 as a preconditioner. The
resulting rate of convergence will be independent of h.

As before, Lemma 4.1 suggests how to construct a symmetric positive definite preconditioner
K0 for K , satisfying K0��2K . Suppose A0 is spectrally equivalent to A, additionally satisfying
A0�A. Then, A0 and ATA−1

0 A will also be spectrally equivalent, with A0�A�ATA−1
0 A. If G0

is spectrally equivalent to G, satisfying G0�G, then Lemma 4.1 will yield

K0 ≡ �2
∗(	)

[
	A0 0

0 G0

]
��2K = �2

⎡
⎣M + 	ATA−1

0 A 	ATA−1
0 B

	BTA−1
0 A G + 	BTA−1

0 B

⎤
⎦ (39)

Thus, once spectrally equivalent matrices A0�A and G0�G have been chosen, and parameter

∗(	) has been estimated, the preconditioner K0 defined by (39) can be employed to transform
indefinite system (31) into the symmetric positive definite system (37). The CG method can be
employed to solve system (37) with spectrally equivalent preconditioner L0 defined by (38).

Copyright q 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (in press)
DOI: 10.1002/nla



ELLIPTIC OPTIMAL CONTROL PROBLEMS

Remark 16
In practical implementations of the CG method to solve (37), the matrix–vector product with L
can be computed as follows, when w= (yT,uT)T:

L

[
w

p

]
=
⎡
⎣(KTK−1

0 − I )(Kw + NTp)

N [K−1
0 (Kw + NTp) − w]

⎤
⎦

Each matrix–vector product with K can be computed as in (36), requiring the action of A−1
0

once. Each matrix–vector multiplication with L will require two matrix–vector multiplications
with K and one matrix–vector multiplications with K−1

0 (which together require the action of
A−1
0 three times). Also note that the action of inverse L−1

0 of a block diagonal preconditioner
requires the action of A−1

0 and A−1∗ . Thus, each iteration of this preconditioned CG algorithm will
require the action of A−1

0 four times and that of A−1∗ once, per iteration. For alternative efficient
implementations, see [33].

The following bounds can be proved for the resulting CG algorithm.

Lemma 4.3
Suppose the following conditions hold.

1. Let A0 be spectrally equivalent to A satisfying A0 � A.
2. Let G0 �G be spectrally equivalent to G.
3. Let A∗ be spectrally equivalent to (1/�2
∗(	))(	−1A + BG−1BT).

Then, for the choice K0 = �2 
∗(	)blockdiag(	A0,G0), the matrix:

L0 = blockdiag(K0, A∗) =
[
K0 0

0 A∗

]

will be spectrally equivalent to L in (37), independent of h.

Proof
By construction, matrix K0 will satisfy K0 � �2K and be spectrally equivalent to K . As a result, by
[15, 21, 23], the coefficient matrix L in (37) will be symmetric positive definite, and spectrally equiv-
alent to L0 = blockdiag(K0, NK−1

0 NT). For the special choice K0 = �2 
∗(	)blockdiag(	A0,G0) �
�2K , we obtain

(NK−1
0 NT) = 1

�2
∗(	)
(	−1AA−1

0 AT + BG−1
0 BT)

where AA−1
0 AT is spectrally equivalent to A0, and BG−1

0 BT has block structure

BG−1
0 BT =

[
0

Q

]
G−1

0

[
0

Q

]T
=
[
0 0

0 QG−1
0 QT

]
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Thus, 	−1AA−1
0 AT + BG−1

0 BT will be spectrally equivalent to

	−1A + BG−1BT = 	−1

[
AI I AI B

AT
I B ABB + 	QG−1

0 QT

]

The desired result follows when A∗ is spectrally equivalent to (1/�2
∗(	))(	−1A + BG−1BT).
�

5. ALTERNATIVE APPROACHES

In this section, we shall describe two alternative heuristic approaches to solving (13) when matrix
M is singular. One approach describes a projected gradient method, as in [24], without the use of
the augmented Lagrangian formulation or the reduced Schur complement system for u. In another
approach, a non-symmetric block matrix preconditioner is proposed for (13) and accelerated by
GMRES.

5.1. Projected gradient method

Suppose that M is a matrix of rank (n − k), where dim(Kernel(M))= k. Let H denote a matrix
of dimension n × k, whose columns form a basis for the null space of M

Range(H) =Kernel(M) ⊂ Rn

When M is singular, the first block row of (13) will be solvable only when

HT(f1 − ATp) = 0�⇒ y= M†(f1 − ATp) + Ha

where a∈ Rk . Here, M† denotes the Moore–Penrose pseudoinverse of M . Formally solving the
second block row for u, yields

u=G−1(f2 − BTp)

Formally substituting the preceding two expressions for y and u into the third block row yields the
following reduced system for p, together with HT(f1 − ATp) = 0, the requirement for consistency
of the first block row

AHa− (AM†AT + BG−1BT)p= f3 − AM†f1 − BG−1f2

HTATp= HTf1

Define the following Euclidean orthogonal projection P0 = AH(HTATAH)−1HTAT onto Range
(AH) (where Range(AH) has dimension k). Applying (I − P0) to the preceding system, and
noting that (I − P0)AHa= 0 yields:

(I − P0)(AM
†AT + BG−1BT)p= − (I − P0)(f3 − AM†f1 − BG−1f2)

together with the constraint HTATp= HTf1. We may decompose

p=p∗ + p̃ where HTATp∗ = HTf1
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so that HTAT p̃= 0. The term p∗ can be sought as p∗ = AHc∗ for some c∗ ∈ Rk . This will yield
p∗ = AH(HTATAH)−1HTf1, and the following system for p̃:

(I − P0)(AM
†AT + BG−1BT)p̃= g̃

where g̃≡ (I − P0)(AM†f1 + BG−1f2 − f3 − (AM†AT + BG−1BT)p∗). Since HTATp̃= 0, it will
formally hold that (I − P0)p̃= p̃, so that we may solve the system for p̃ using a CG algorithm.
A preconditioner T may be employed, such that the action of its inverse is given by

T−1 ≡ (I − P0)(A0M
†AT

0 + BG−1BT)−1(I − P0)

The term (AM†AT + BG−1BT)−1 may be replaced by A−T
0 MA−1

0

5.2. Block preconditioner

Another approach to solve (13) is to precondition this system by a non-symmetric block matrix
preconditioner L0, as described below, and to use GMRES acceleration [17]:

L0 =

⎡
⎢⎢⎣
M 0 AT

0 G BT

A 0 0

⎤
⎥⎥⎦

It is easily verified that block matrix L0 is easily inverted. A heuristic analysis of the eigenvalues
of L−1

0 L (where L denotes the original symmetric, indefinite saddle point coefficient matrix), can
be obtained by analysing:

⎡
⎢⎢⎣
M 0 AT

0 G BT

A B 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
y

u

p

⎤
⎥⎥⎦ = �

⎡
⎢⎢⎣
M 0 AT

0 G BT

A 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
y

u

p

⎤
⎥⎥⎦ (40)

The eigenvalues may be estimated as follows. From (40) we obtain

(1 − �)My + (1 − �)ATp= 0

(1 − �)Gu + (1 − �)BTp= 0

(1 − �)Ay + Bu= 0

(41)

If � = 1, then Bu= 0, with y and p arbitrary, yielding u= 0. The eigenspace will have dimension
2n. If � 
= 1, then:

(1 − �)Gu= (BTA−TMA−1B)u (42)

If Range(A−1B) ∩ Kernel(M) ={0}, we will obtain c1 hr � (1 − �) � c2<1 for some c1, c2>0
independent of h. This will yield m eigenvectors. Thus, all eigenvalues � will lie in an interval
[1 − c2, 1] away from the origin.
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6. CONCLUDING REMARKS

In this paper we have mainly described two approaches for iteratively solving the saddle point
system (13). Both approaches avoid the use of GMRES acceleration and can be applied to two
alternate choices of regularization terms. The first method is based on the CG solution of a Schur
complement system, and requires double iteration, while the method, based on the augmented
Lagrangian formulation, avoids double iteration. In both the cases, the preconditioners described
yield rates of convergence independent of h, however, the rate of convergence may depend on the
magnitude of the regularization parameters �1>0 and �2>0 (except for the FFT-based precondi-
tioner applicable when �⊂ R2).

Throughout the paper, we have assumed that �>0, so that matrix A is symmetric positive
definite. However, if � = 0 in an application, then matrix A will be singular with 1= (1, . . . , 1)T

spanning the null space of A. In this case, all the preceding algorithms must be appropriately
modified, by replacing A−1 by A†. The action of A† on a vector can be computed numerically by
filtering out the components of this vector in the direction of 1 using a projection (I − P0) where
P0 denotes the Euclidean orthogonal projection onto 1.
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