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Abstract

We consider the coupling across an interface of a fluid flow and a porous
media flow. The differential equations involve Stokes equations in the fluid
region and Darcy equations in the porous region, and a coupling through
an interface with Beaver-Joseph-Saffman transmission conditions. The
discretization consists of P2/P1 triangular Taylor-Hood finite elements
in the fluid region, the lowest order triangular Raviart-Thomas finite ele-
ments in the porous region, and the mortar piecewise constant Lagrange
multipliers on the interface. We allow for nonmatching meshes across the
interface. Due to the small values of the permeability parameter κ of
the porous medium, the resulting discrete symmetric saddle point system
is very ill conditioned. We design and analyze preconditioners based on
the Finite Element by Tearing and Interconnecting (FETI) and Balancing
Domain Decomposition (BDD) methods and derive a condition number
estimate of order C1(1 + 1

κ
) for the preconditioned operator. In case the

fluid discretization is finer than the porous side discretization, we derive
a better estimate of order C2(

κ+1
κ+(hp)2

) for the FETI preconditioner. Here

hp is the mesh size of the porous side triangulation. The constants C1

and C2 are independent of the permeability κ, the fluid viscosity ν, and
the mesh ratio across the interface. Numerical experiments confirm the
sharpness of the theoretical estimates.
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1 Introduction

We consider the coupling across an interface of a fluid flow and a porous media
flow. The model consists of Stokes equations in the fluid region, Darcy equations
for the filtration velocity in the porous medium, and an adequate transmission
condition for coupling of these equations through an interface. Such problem
appears in several applications such as well-reservoir coupling in petroleum en-
gineering, transport of substances across groundwater and surface water, and
(bio)fluid-organ interactions. There are works that address numerical analysis
issues of this model. For inf-sup conditions and approximation results associ-
ated to the continuous and discrete formulations for Stokes-Laplacian systems
we refer [14, 15], for Stokes-Darcy systems we refer [29, 37, 2], for Stokes-Mortar-
Darcy systems we refer [39, 25], and for DG discretizations [11, 39]. For studies
on preconditioning analysis for Stokes-Laplacian systems we refer [12, 13, 16, 17],
and for Stokes-Darcy systems we refer [3]. In this paper, we are interested in
Balancing Domain Decomposition (BDD) and Finite Element by Tearing and
Interconnecting (FETI) preconditioned Conjugate Gradient methods for Stokes-
Mortar-Darcy systems. For general references on BDD methods we mention
[21, 33, 34, 38, 40] and for FETI methods [21, 23, 28, 35, 40] for FETI methods;
see also [18, 22, 30, 31, 32, 41, 42].

In this paper we both extend some preliminary results contained in [24] and
introduce and analyze new methods. We note that the BDD-I preconditioner
introduced in [24] is not effective for small permeabilities (in real applications
permeabilities are very small) while the preconditioner BDD-II in [24] requires
constructing interface base functions which are orthogonal in the Stokes inner
product (this construction is very expensive and impractical because it requires,
as a precomputational step, solving many Stokes problems). Here in this paper
we circumvent these issues by introducing a dual formulation and considering a
FETI based methods. We propose and analyze Finite Element by Tearing and
Interconnecting (FETI) methods and present numerical experiments in order to
verify the theory. We note that the analysis of the FETI algorithms for Stokes-
Mortar-Darcy problems is very challenging due to the following issues: 1) The
mortar map from the Stokes to the Darcy side has a large kernel since the Stokes
velocity space is in general richer than the Darcy velocity space on the interface;
2) The trace space of the Stokes velocity (H1/2) is more regular than the trace
space of the Darcy flux (H−1/2), and due to a priori error estimates, see [29, 39,
25], the Stokes side must be chosen as the master side; 3) The energy associated
to the Darcy region is much larger than the energy associated to the Stokes
region due to the small value of the permeability. Such issues imply that the
master side must be chosen on the Stokes side and where the energy is smaller
and velocity space is richer. The mathematical analysis under this choice is very
hard to analyze even for simpler problems such as for transmission problems
with discontinuous coefficients using Mortar or DG discretizations [21, 19, 20].
For problems where both the smallest coefficient and the finest mesh are placed
on the master side, as far as we know, there are no optimal preconditioners
developed in the literature for transmission problems, and typically there is a
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condition to rule out such choice.
The rest of the paper is organized as follows: in Section 2 we present the

Stokes/Darcy coupling model. In Section 3 we describe the weak formulation of
this model. In Section 4 we introduce a finite element discretization. In Section
5 we study the primal and dual formulation of the discrete problem. Section
6 is dedicated to present a complete analysis of the BDD-I preconditioner in-
troduced in [24]. In Section 7, we design and analyze the FETI preconditioner;
see Lemma 3 and Theorem 4. In particular we obtain the condition number
estimate of order C1(1 + 1

κ ) for this preconditioner and also prove Theorem 7
which gives a better estimate of order C2( κ+1

κ+(hp)2 ) for the FETI preconditioner
in case the fluid discretization is finer than the porous side discretization; the
case where the Stokes mesh is not a refinement of the Darcy mesh is also dis-
cussed; see Remark 8. In Section 7 we also consider more general fluid bilinear
forms by allowing the presence of a tangential interface fluid velocity energy,
see Remark 10, and also translate the FETI results to analyze certain BDD
methods; see Remark 9.

Here hp is the mesh size of the porous side triangulation. The constants C1

and C2 are independent of the permeability κ, the fluid viscosity ν, and the mesh
ratio across the interface. In Section 8 we present numerical results that confirm
the theoretical estimates concerning the BDD and the FETI preconditioners.

2 Problem Setting

Let Ωf , Ωp ⊂ Rn be polyhedral subdomains, define Ω := int(Ω
f ∪ Ω

p
) and

Γ := ∂Ωf ∩ ∂Ωp, with outward unit normal vectors ηi on ∂Ωi, i = f, p. The
tangent vectors on Γ are denoted by τ 1 (n = 2), or τ l, l = 1, 2 (n = 3). The
exterior boundaries are Γi := ∂Ωi \ Γ, i = f, p. Fluid velocities are denoted by
ui : Ωi → Rn, i = f, p, and pressures by pi : Ωi → R, i = f, p.

We consider Stokes equations in the fluid region Ωf and Darcy equations for
the filtration velocity in the porous medium Ωp. More precisely, we have the
following systems of equations in each subdomain:

Stokes equations Darcy equations −∇ · T (uf , pf ) = ff in Ωf

∇ · uf = gf in Ωf

uf = hf on Γf

 up = −κ
ν∇pp in Ωp

∇ · up = gp in Ωp

up · ηp = hp on Γp.
(1)

Here T (v, p) := −pI+2νDv, where ν is the fluid viscosity, Dv := 1
2 (∇v+∇vT )

is the linearized strain tensor and κ denotes the rock permeability. For simplicity
on the analysis, we assume that κ is a real positive constant. We impose the
following conditions:

1. Interface matching conditions across Γ; see [14, 15, 16, 29] and references
therein.
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(a) Conservation of mass across Γ: uf · ηf + up · ηp = 0 on Γ.

(b) Balance of normal forces across Γ: pf − 2νηfT D(uf )ηf = pp on Γ.

(c) Beavers-Joseph-Saffman condition: This condition is a kind of em-
pirical law that gives an expression for the component of the Cauchy
stress tensor in the tangential direction of Γ; see [4] and [27]. It is
expressed by:

uf · τ l = −
√

κ

αf
2ηfT D(uf )τ l l = 1, n− 1; on Γ.

2. Compatibility condition: The divergence and boundary data satisfy (see
[25]),

〈gf , 1〉Ωf + 〈gp, 1〉Ωp − 〈hf · ηf , 1〉Γf − 〈hp, 1〉Γp = 0.

3 Weak Formulation

In this section we present the weak version of the coupled system of partial
differential equations introduced above. Without loss of generality, we consider
hf = 0, gf = 0, hp = 0 and gp = 0 in (1); see [25].

The problem can be formulated as: Find (u, p, λ) ∈ X ×M0 × Λ such that
for all (v, q, µ) ∈ X ×M0 × Λ: a(u,v) + b(v, p) + bΓ(v, λ) = f(v)

b(u, q) = 0
bΓ(u, µ) = 0,

(2)

where X = Xf ×Xp := H1
0 (Ωf ,Γf )n ×H0(div,Ωp,Γp) and M0 is the subset

of M := L2(Ωf ) × L2(Ωp) ≡ L2(Ω) of pressures with zero average value in Ω.
Here H1

0 (Ωf ,Γf ) denotes the subspace of H1(Ωf ) of functions that vanish on
Γf . The space H0(div,Ωp,Γp) consists of functions in H(div,Ωp) with zero
normal trace on Γp, where

H(div,Ωp) :=
{
v ∈ L2(Ωp)n : divv ∈ L2(Ωp)

}
.

For the Lagrange multiplier space we consider Λ := H1/2(Γ). See [25] for a
discussion on the choice of the Lagrange multipliers space Λ and how to derive
the weak formulation (2) and other equivalent weak formulations; see also [29].

The global bilinear forms are

a(u,v) := af
αf (uf ,vf ) + ap(up,vp) and b(v, p) := bf (vf , pf ) + bp(vp, pp),
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with local bilinear forms af
αf , bf and bp defined by

af
αf (uf ,vf ) := 2ν(Duf ,Dvf )Ωf +

n−1∑
`=1

ναf

√
κ
〈uf · τ `,v

f · τ `〉Γ, uf ,vf ∈ Xf ,

(3)
ap(up,vp) := (

ν

κ
up,vp)Ωp , up,vp ∈ Xp, (4)

bf (vf , qf ) := −(qf ,∇ · vf )Ωf , vf ∈ Xf , qf ∈ Mf , (5)

bp(vp, pp) := −(pp,∇ · vp)Ωp , vp ∈ Xp, pp ∈ Mp, (6)

and with weak conservation of mass bilinear form defined by

bΓ(v, µ) := 〈vf · ηf , µ〉Γ + 〈vp · ηp, µ〉Γ, v = (vf ,vp) ∈ X, µ ∈ Λ. (7)

The second duality pairing of (7) is interpreted as 〈vp · ηp, Eηp(µ)〉∂Ωp . Here
Eηp is any continuous lift-in operator from H1/2(Γ) to H1/2(∂Ωp); recall that
Γ ⊂ ∂Ωp and v ∈ H0(div,Ωp,Γp). It easy to see that this duality pairing is
independent of the lift-in operator Eηp . This duality pairing is an extension of
the L2(Γ) inner product when vp · ηp and µ are L2(Γ) functions, see [25].

The functional f in the right hand side of (2) is defined by

f(v) := ff (vf ) + fp(vp), for all v = (vf ,vp) ∈ X,

where f i(vi) := (f i,vi)L2(Ωi) for all vi ∈ Xi, i = f, p.

The bilinear forms af
αf , bf are associated to Stokes equations and the bilinear

forms ap, bp to Darcy law. The bilinear form af
αf includes interface matching

conditions 1.b and 1.c above. The bilinear form bΓ is used to impose the weak
version of the interface matching condition 1.a above. We have the following
lemma that addresses the well-posedness of the problem.

Lemma 1 (See [25, 29]) There exists β > 0 such that

inf
(q,µ)∈M0×Λ

(q,µ) 6=0

sup
v∈X

v 6=0

b(v, q) + bΓ(v, µ)
‖v‖X (‖p‖M + ‖µ‖Λ)

≥ β > 0. (8)

where ‖v‖2
X := ‖vf‖2

H1
0 (Ωf )2

+ ‖vp‖2
H(div,Ωp). This inf-sup condition, together

with the fact that af
αf is Xf×H(div0,Ωp)-elliptic and af

αf , b and bΓ are bounded,
guarantees the well-posedness of the problem (2).
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4 Discretization

From now on we consider only the two dimensional case. We note that the ideas
developed in the following can be easily extended to case of three dimensional
subdomains.

We assume that Ωi, i = f, p, are two dimensional polygonal subdomains.
Let T i

hi(Ωi) be a geometrically conforming shape regular and quasi-uniform
triangulation of Ωi with mesh size parameter hi, i = f, p. We do not assume
that these two triangulations match at the interface Γ. For the fluid region, let
Xf

hf and Mf
hf be P2/P1 triangular Taylor-Hood finite elements; see [7, 8, 10].

More precisely,

Xf
hf :=

{
u ∈ Xf : ∀K ∈ T f

hf (Ωf ), uK = ûK ◦ F−1
K

and ûK ∈ P2(K̂)2

}
∩ C0(Ω

f
)2, (9)

where uK := u|K and

Mf
hf :=

{
p ∈ L2(Ωf ) : ∀K ∈ T f

hf (Ωf ), pK = p̂K ◦ F−1
K

and p̂K ∈ P1(K̂)

}
∩ C0(Ω

f
).

Denote M̊
f

hf ⊂ Mf
hf the discrete fluid pressures with zero average value in Ωf .

For the porous region, let Xp
hp ⊂ Xp and Mp

hp ⊂ L2(Ωp) be the lowest order
Raviart-Thomas finite elements based on triangles; see [7, 10]. Let M̊

p

hp ⊂ Mp
hp

be the subset of pressures in Mp
hp with zero average value in Ωp.

Define Xh := Xf
hf ×Xp

hp ⊂ X and Mh := Mf
hf ×Mp

hp ⊂ L2(Ωf )×L2(Ωp).
Note that in the definition of the discrete velocities we assume that the bound-
ary conditions are included, i.e., for vf

hf ∈ Xf
hf we have vf

hf = 0 on Γf and for
vp

hp ∈ Xp
hp we have that vp

h · ηp = 0 on Γp.

Let T p
hp(Γ) be the restriction to Γ of the porous side triangulation T p

hp(Ωp).
For the Lagrange multipliers space we choose piecewise constant functions on Γ
with respect to the triangulation T p

hp(Γ),

Λhp :=
{

λ : λ|ep
j

= λep
j

is constant in each edge ep
j of T p

hp(Γ)
}

, (10)

i.e., the master is on the fluid region side and the slave is on the porous region
side; see [5, 6, 21, 43]. The choice of piecewise constant Lagrange multipli-
ers leads to a nonconforming approximation on Λhp since piecewise constant
functions do not belong to H1/2(Γ). For the analysis of this nonconforming
discretization and a priori error estimates we refer to [25].

5 Primal and Dual Formulations

In order to simplify the notation and since there is no danger of confusion, we
will denote the finite element functions and the corresponding vector represen-
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tation by the same symbol, i.e., when writing finite element functions we will
drop the indices hi. Recall that we have the pair of spaces (Xh,Mh) associated
to the coupled problem and spaces associated to each subproblem: (Xf

hf ,Mf
hf )

and (Xp
hp ,Mp

hp). We will keep the subscript hi, i = f, p, in the notation for
local subspaces Xf

hf ,Mf
hf ,Xp

hp and Mp
hp .

Since we are interested in preconditioning issues we assume αf = 0 in the
definition of the fluid side local bilinear form af

αf in (3). We denote af = af
0 .

See Remark 10 for the case αf > 0.

With the discretization chosen in Section 4 we obtain the following symmet-
ric saddle point linear system

Af BfT 0 0 CfT

Bf 0 0 0 0
0 0 Ap BpT −CpT

0 0 Bp 0 0
Cf 0 −Cp 0 0




uf

pf

up

pp

λ

 =


ff

gf

fp

gp

0

 (11)

with matrices Ai, Bi, Ci and columns vectors f i, gi, i = f, p, defined by

ai(ui,vi) = viT Aiui,
bi(ui, qi) = qiT Biui,
(ui · ηf , µ)Γ = µT Ciui,

f i(vi) = viT f i,
gi(qi) = qiT gi.

(12)

Matrix Af corresponds to ν times the discrete version of the linearized stress
tensor on Ωf . Note that in the case αf > 0, the bilinear form af

αf in (3) includes
a boundary term; see Remark 10. The matrix Ap corresponds to ν/κ times a dis-
crete L2-norm on Ωp. Matrix −Bi is the discrete divergence in Ωi, i = f, p, and
matrices Cf and Cp correspond to the matrix form of the discrete conservation
of mass on Γ. Note that ν can be viewed as a scaling factor since it appears in
both matrices Af and Ap. Therefore, it is not relevant for preconditioning issues.

Consider the following partition of the degrees of freedom: For i = f, p, let
ui

I

pi
I

ui
Γ

p̄i


Interior displacements + tangential velocities on Γ,
Interior pressures with zero average in Ωi,
Interface outward normal velocities on Γ,
Constant pressure in Ωi.

Then, for i = f, p, we have the block structure:

Ai =
[

Ai
II AiT

ΓI

Ai
ΓI Ai

ΓΓ

]
, Bi =

[
Bi

II BiT
ΓI

0 B̄iT

]
and Ci =

[
0 0 C̃i 0

]
.
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Note that the (2, 1) entry of Bi corresponds to integrating an interior velocity
against a constant pressure, then it vanishes due to the divergence theorem. We
have the following matrix representation of the coupled problem in (11):

Af
II BfT

II AfT
ΓI 0 0 0 0 0 0

Bf
II 0 BfT

ΓI 0 0 0 0 0 0

Af
ΓI BfT

IΓ Af
ΓΓ B̄fT 0 0 0 0 C̃fT

0 0 B̄f 0 0 0 0 0 0

0 0 0 0 Ap
II BpT

II ApT
ΓI 0 0

0 0 0 0 Bp
II 0 Bp

IΓ 0 0

0 0 0 0 Ap
ΓI BpT

IΓ Ap
ΓΓ B̄pT −C̃pT

0 0 0 0 0 0 B̄p 0 0

0 0 C̃f 0 0 0 −C̃p 0 0





uf
I

pf
I

uf
Γ

p̄f

up
I

pp
I

up
Γ

p̄p

λ


=



ff
I

gf
I

ff
Γ

ḡf

fp
I

gp
I

fp
Γ

ḡp

0


.

(13)
Following [21, 38], we choose the following matrix representation in each

subdomain Ωi, i = f, p,
Ai

II BiT
II AiT

ΓI 0
Bi

II 0 Bi
IΓ 0

Ai
ΓI B

iT
IΓ Ai

ΓΓ B̄iT

0 0 B̄i 0

 =
[

Ki
II KiT

ΓI

Ki
ΓI Ki

ΓΓ

]
. (14)

5.1 The primal formulation

From the last equation in (13) we see that the mortar condition on Γ (using
the Darcy side as the slave side) can be imposed as up

Γ = (C̃p)−1C̃fuf
Γ = Πuf

Γ,
where Π is the L2(Γ) projection on the space of piecewise constant functions
on each subinterval ep ∈ T p

hp(Γ). We note that C̃p is a diagonal matrix for the
lowest order Raviart-Thomas elements.

Now we eliminate ui
I , pi

I , i = f, p, and λ, to obtain the following (saddle
point) Schur complement

S

 uf
Γ

p̄f

p̄p

 =

 bΓ

b̄f

b̄p

 . (15)

Here S is given by

S : =

 Sf
Γ B̄fT 0

B̄f 0 0
0 0 0

 + Π̃T

 Sp
Γ 0 B̄pT

0 0 0
B̄p 0 0

 Π̃

= S̃f + S̃p
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=


Sf

Γ + ΠT Sp
ΓΠ B̄fT ΠT B̄pT

B̄f 0 0
B̄pΠ 0 0

 =
[

SΓ B̄T

B̄ 0

]
,

where

Π̃ :=

 Π 0 0
0 1 0
0 0 1

 , B̄T := [B̄fT ΠT B̄pT ]. (16)

Here, we have denoted

S̃f :=

 Sf
Γ B̄fT 0

B̄f 0 0
0 0 0

 and S̃p := Π̃T

 Sp
Γ 0 B̄pT

0 0 0
B̄p 0 0

 Π̃. (17)

The local matrices Si
Γ and B̄i and the local Schur complement Si are given by

Si =
[

Si
Γ B̄iT

B̄i 0

]
:= Ki

ΓΓ −Ki
ΓI

(
Ki

ΓΓ

)−1
KiT

ΓI , i = p, f. (18)

The right hand side of (15) is given by bΓ

b̄f

b̄p

 =


 ff

Γ

ḡf

0

−

 Kf
ΓI

(
Kf

ΓΓ

)−1
[

ff
I

gf
I

]
0

 +


 ΠT fp

Γ

0
ḡp

− Π̃T

 Kp
ΓI (Kp

ΓΓ)−1

[
fp

I

gp
I

]
0

 .

We note that the reduced system (15), as well as the original system (13),
is solvable when b̄f + b̄p = 0, and the solution is unique when we restrict to
pressures with zero average value on Ω.

From now on we only work with functions defined on Γ and extended inside
the subdomain using the discrete Stokes and Darcy problems. It is convenient
to define the space

VΓ :=
{

vΓ = (vf
Γ, vp

Γ) : vf
Γ = SH(vf · ηf |Γ) and vp

Γ = DH(vp · ηp|Γ))
}

(19)

and

Mh
0 :=

{
q ∈ Mh : qi = piec. const. in Ωi, i = f, p, and

∫
Ωf qf +

∫
Ωp qp = 0

}
.

(20)
Here SH (DH) is the velocity component of the discrete Stokes (Darcy) har-
monic extension operator that maps discrete interface normal velocity uf

Γ ∈
H

1/2
00 (Γ) (respectively up

Γ ∈ (H1/2(Γ))′) to the solution of following problem:
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Find ui ∈ Xi
hi and pi ∈ M̊

i

hi such that for all vi ∈ Xi
hi and qi ∈ M̊

i

hi , i = f, p,
we have: 

af (SHuf ,vf ) + bf (vf , pf ) = 0
bf (SHuf , qf ) = 0

SHuf · ηf = uf
Γ on Γ

SHuf = 0 on Γf ,

(21)

and 
ap(DHup,vp) + bp(vp, pp) = 0

bp(DHup, qp) = 0
DHup · ηp = up

Γ on Γ
DHup · ηp = 0 on Γp.

(22)

The degrees of freedom associated with SHuf · τ f on Γ are free. This corre-
sponds to imposing the natural boundary condition τT D(SHuf )ηf = 0 on Γ
which is the the expression for interface condition of Beavers-Joseph-Saffman
with αf = 0.

For i = f, p, define the normal trace component of Xi
hi by

Zi
hi =

{
vi · ηi|Γ : vi ∈ Xi

hi

}
. (23)

Associated with the coupled problem (13) we introduce the balanced subspace

VΓ,B̄ :=
{

vf
Γ ∈ Zf

hf : (vf
Γ,Πvf

Γ) ∈ VΓ, and
∫

Γ

vf
Γ · ηf = 0

}
, (24)

with VΓ defined in (19); see [38]. Observe that VΓ,B̄ = KerB̄, where B̄ is defined
in (16) and (18). Then for vf

Γ ∈ VΓ,B̄ we have B̄vf
Γ = 0. We will refer to functions

vf
Γ ∈ VΓ,B̄ as balanced functions. If vp

Γ = Πvf
Γ and vf

Γ is a balanced function then
we also say that vp

Γ is a balanced function or the pair (vf
Γ,Πvf

Γ) is balanced.

5.2 Dual formulation

In the system (13), we first eliminate the unknowns uf
I , pf

I and up
I , p

p
I . We

obtain 
Sf

Γ B̄fT 0 0 C̃fT

B̄f 0 0 0 0

0 0 Sp
Γ B̄pT −C̃pT

0 0 B̄p 0 0

C̃f 0 −C̃p 0 0




uf

Γ

p̄f

up
Γ

p̄p

λ

 =

 b̃f

b̃p

0

 , (25)
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where right hand side of (25) is given by

 b̃f

b̃p

0

 =



[
ff
Γ

ḡf

]
−Kf

ΓI

(
Kf

ΓΓ

)−1
[

ff
I

gf
I

]
[

fp
Γ

ḡp

]
−Kp

ΓI (Kp
ΓΓ)−1

[
fp

I

gp
I

]
0

 .

Here Si
Γ,Ki

II and Ki
IΓ, i = f, p, are defined in (18) and (14).

Let Ni :=
[

C̃i 0
]

and consider Si, i = f, p, defined in (18). Then the
matrix in the left hand side of (25) can be rewritten as Sf 0 NfT

0 Sp −NpT

Nf −Np 0

 .

Now we eliminate the unknowns uf
Γ, p̄f and up

Γ, p̄p. We end up with the reduced
system

Fλ = c, (26)

where the operator F is defined by

F := Nf (Sf )−1NfT + Np(Sp)−1NpT , (27)

and the right hand side c is given by

c = Nf (Sf )−1

{[
ff
Γ

ḡf

]
−Kf

ΓI

(
Kf

ΓΓ

)−1
[

ff
I

gf
I

]}
−

Np(Sp)−1

{[
fp
Γ

ḡp

]
−Kp

ΓI (Kp
ΓΓ)−1

[
ff

I

gp
I

]}
.

Note that F is positive semidefinite and since a discrete Lagrange multiplier
in Λhp does not have necessarily zero mean average value on Γ, then, the op-
erator F has one simple zero eigenvalue corresponding to a constant Lagrange
multiplier. The above linear system, as well as the original linear system (13),
is solvable for zero mean right hand side, i.e., for cT · (1, . . . , 1) = 0.

6 BDD Preconditioner

In this section we design and analyze a BDD type preconditioner for the Schur
complement system (15); see [9, 21, 40] and also [1, 20, 33, 38, 41]. For the sake
of simplicity on the analysis we assume that Γ = {1}×(0, 1), Ωf = (1, 2)×(0, 1)
and Ωp = (0, 1) × (0, 1). We introduce the velocity coarse space on Γ as the
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span of the normal velocity v0 = y(1 − y) (with v0 also denoting its vector
representation). Define:

R0 :=
[

vT
0 0
0 I2×2

]
, S0 := R0SRT

0 and Q0 := RT
0 S†0R0. (28)

The system (15) is solvable when the right hand side satisfy b̄f + b̄p = 0
with uniqueness of the solution in the space of vectors with pressure component
having zero average value on Ω. Then, we have that S0 is invertible restricted
to vectors with pressure component in Mh

0 defined in (20). The low dimension-
ality of the coarse space (which is spanned by v0 and a constant pressure per
subdomain Ωi, i = f, p,) and the fact that the functions v0 is independent of the
triangulation parameters imply stable discrete inf-sup condition for the coarse
problem.

Denote S̃0 := vT
0 SΓv0 and S̃ := B̄v0S̃

−1
0 vT

0 B̄T . We can write (see (16) and
(28))

S0 =
[

S̃0 (B̄v0)T

B̄v0 0

]
.

A simple calculation using the formula for the inverse of a saddle point matrix
gives

Q0 =
[

v0S̃
−1
0 vT

0 − v0S̃
−1
0 vT

0 B̄T S̃−1B̄v0S̃
−1
0 vT

0 v0S̃
−1
0 vT

0 B̄T S̃−1

S̃−1B̄v0S̃
−1
0 vT

0 S̃−1

]
,

and using (16) we obtain

Q0S =

[
v0S̃

−1
0 vT

0 SΓ − v0S̃
−1
0 vT

0 B̄T S̃−1B̄v0S̃
−1
0 vT

0 SΓ + v0S̃
−1
0 vT

0 B̄T S̃−1B̄ 0
S̃−1B̄v0S̃

−1
0 vT

0 SΓ − S̃−1B̄ I

]
,

or Q0S =
[
P 0
G I

]
. Here, we have defined

P :=
(
v0S̃

−1
0 vT

0 SΓ − v0S̃
−1
0 vT

0 B̄T S̃−1B̄v0S̃
−1
0 vT

0 SΓ

)
+ v0S̃

−1
0 vT

0 B̄T S̃−1B̄

G := S̃−1B̄ − S̃−1B̄v0S̃
−1
0 vT

0 SΓ.

With this notation we have that I − Q0S =
[

I − P 0
G 0

]
. Elementary cal-

culations show that P2 = P and B̄(I − P) = 0, hence I − P is a projection
and its image is contained on the balanced subspace defined in (24); see also [38].

Given a residual r =
[

fT
Γ ḡT

]T , the coarse problem Q0r, with Q0 defined
in (28), is the solution of the coupled problem (13) with one velocity degree of
freedom (v0), and a constant pressure per subdomain Ωi, i = f, p, with mean
zero in Ω = int(Ω

f ∪ Ωp). Note that the matrix S0 defined in (28) can be
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computed easily and in order to ensure zero mean pressure on Ω we can use a
Lagrange multiplier.

For balanced functions vf
Γ and uf

Γ, the SΓ-inner product is defined by (see
(16)):

〈uf
Γ, vf

Γ〉SΓ := 〈SΓuf
Γ, vf

Γ〉 = ufT
Γ SΓvf

Γ.

Recall that B̄uf
Γ=0 when uf

Γ is balanced. Then, on this subspace of balanced
functions, the SΓ inner product coincides with the S-inner product defined by

〈 vf
Γ

q̄f

q̄p

 ,

 uf
Γ

p̄f

p̄p

〉
S

:=

 vf
Γ

q̄f

q̄p

T

S

 uf
Γ

p̄f

p̄p

 =
[

vf
Γ

q̄

]T [
SΓ B̄T

B̄ 0

] [
uf

Γ

p̄

]
,

where p̄T = [ p̄p p̄p ]T . Consider the BDD preconditioner operator given by

S−1
N := Q0 + (I −Q0S) (S̃f )† (I − SQ0) , (29)

where S̃f is defined in (17); see [21, 38]. The notation (S̃f )† stands for the
pseudo-inverse of S̃f , i.e.,

(S̃f )† =
[

(Sf )−1 0
0 0

]
,

with Sf defined in (18). The preconditioned operator is given by

S−1
N S = Q0S + (I −Q0S) (S̃f )†S (I −Q0S)

=
[
P 0
G I

]
+

[
I − P 0
G 0

]
(S̃f )†

[
SΓ B̄T

B̄ 0

] [
I − P 0
G 0

]
.(30)

Note that applying (Sf )−1 to a vector
[

uf
Γ

p̄

]
is equivalent to solving the

linear system 
Af

II BfT
II AfT

ΓI 0
Bf

II 0 Bf
IΓ 0

Af
ΓI B

fT
IΓ Af

ΓΓ B̄fT

0 0 B̄f 0




wf
I

sf
I

wf
Γ

s̄f

 =


0
0
uf

Γ

p̄f

 .

If uf
Γ is balanced, so is balanced the velocity component of (Sf )−1

[
uf

Γ

p̄f

]
. Then

using elementary calculations with the matrices in (30) we obtain that

〈S−1
N S

[
uΓ

p̄

]
,

[
vΓ

q̄

]
〉S = 〈(Sf

Γ)−1SΓuΓ, vΓ〉SΓ ,
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for uΓ, vΓ ∈ Range(I − P). In order to bound the condition number of the
preconditioned operator S−1

N S, we only need to analyze the condition of the
operator (Sf

Γ)−1SΓ. Note that

c〈uf
Γ, uf

Γ〉SΓ ≤ 〈
(
Sf

)−1
SΓuf

Γ, uf
Γ〉SΓ ≤ C〈uf

Γ, uf
Γ〉SΓ

is equivalent to

c〈Sfuf
Γ, uf

Γ〉 ≤ 〈SΓuf
Γ, uf

Γ〉 ≤ C〈Sfuf
Γ, uf

Γ〉. (31)

The next theorem shows that the condition number estimate for the BDD
method introduced in (29) is of order O(1 + 1

κ ), where κ is the permeability
of the porous medium; see (1).

Theorem 2 If uf
Γ is a balanced function then

〈Sf
Γuf

Γ, uf
Γ〉 ≤ 〈SΓuf

Γ, uf
Γ〉 ≺

(
1 +

1
κ

)
〈Sf

Γuf
Γ, uf

Γ〉.

Proof.The lower bound follows trivially from S̃f
Γ and S̃p

Γ being positive on the
subspace of balanced functions. Next we concentrate on the upper bound.

Let vf
Γ be a balanced function and vp

Γ = Πvf
Γ. Define vp = DHvp

Γ; see (22).
Using properties of the discrete operator DH , see [36], we obtain

〈Sp
Γvp

Γ, vp
Γ〉 = ap(vp,vp) � ν

κ
‖vp

Γ‖
2
(H1/2)′(Γ).

Using the L2-stability property of mortar projection Π, we have

‖vp
Γ‖

2
(H1/2)′(Γ) ≺ ‖vp

Γ‖
2
L2(Γ) = ‖vf

Γ‖
2
L2(Γ) ≺ ‖vf

Γ‖
2

H
1/2
00 (Γ)

.

With SH defined in (21), define vf = SHvf
Γ. Using properties of SH, see [38],

we have
ν‖vf

Γ‖
2

H
1/2
00 (Γ)

� af (vf ,vf )

and then
〈Sp

Γvp
Γ, vp

Γ〉 ≺
1
κ
〈Sfuf

Γ, uf
Γ〉. (32)

This gives the upper bound and finishes the proof.

Recall that we consider the preconditioned projected conjugate gradient
method applied to the Schur complement problem (15). We have written the
algorithm in Figure 1.
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1. Initialize

x(0) = Q0b + w

d(0) = b − Sx(0)

with w ∈ Range(I −Q0S). Recall that all vectors have three components, for

instance, x =

24 xΓ

x̄f

x̄p

35 and b =

24 bΓ
b̄f

b̄p

35.

2. Iterate k = 1, 2, . . . until convergence

Precondition: z(k−1) = (S̃f )†d(k−1)

Project: y(k−1) = (I − Q0S)z(k−1)

βk = 〈y(k−1), d(k−1)〉/〈y(k−2), d(k−1)〉 [β(1) = 0]

r(k) = y(k−1) + β(k)r(k) [r(1) = y(0)]

α(k) = 〈y(k−1), d(k−1)〉/〈d(k), Sr(k)〉
x(k) = x(k−1) + α(k)r(k)

d(k) = d(k−1) − α(k)Sr(k)

Figure 1: Implementation of the projected preconditioned conjugate gradient
algorithm for the system (15) involving the BDD preconditioner (29).

7 FETI Preconditioner

In this section we analyze a FETI preconditioner for the reduced linear system
(26); see [9, 21, 40] and also [23, 28, 35]. Recall the definition of F in (27). We
propose the following preconditioner

(Np)†(Sp)(Np)†T , (33)

where (Np)† is the pseudo-inverse (Np)† =
[

(C̃p)−1 0
]
.

Note that after computing the action of (Sf )−1 and (Sp)−1, in the ap-
plication of F to a zero average Lagrange multiplier, we end up with bal-
anced functions. Therefore, in order to apply the preconditioned operator
(Np)†(Sp)(Np)†T F to a zero mean Lagrange multiplier, we do not need to solve
a coarse problem at the beginning of the CG, neither inside of the CG iteration.

The FETI preconditioner in (33) can be considered as the dual precondi-
tioner of the BDD preconditioner defined in (29); see the proof of Lemma 3
below.

Recall the definition of Si, i = f, p, in (18) and the definition of space of
balanced functions VΓ = V f

Γ × V p
Γ in (24) and (23). We prove the following

result.

Lemma 3 Let λ ∈ Λhp ∩ L2
0(Γ) be a zero mean Lagrange multiplier. Then

〈Nf (Sf )−1NfT λ, λ〉 ≺ 1
κ
〈Np(Sp)−1NpT λ, λ〉.
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Proof. Consider a zero mean Lagrange multiplier λ. Define t = (Sp)−
1
2 NpT λ

and wf = NfT λ. Then it is enough to prove that

‖(Sf )−
1
2 wf‖2 ≺ ‖t‖2.

Since wf is balanced, i.e., wf ∈ V f
Γ , we have that

‖(Sf )−
1
2 wf‖2 = sup

zf∈Zf
hf

〈(Sf )−
1
2 wf , zf 〉2

‖zf‖2

= sup
vfbalanced

〈wf , vf 〉2

‖(Sf )
1
2 vf‖2

= sup
vfbalanced

〈λ, Nfvf 〉2

‖(Sf )
1
2 vf‖2

= sup
vfbalanced

〈(Sp)−
1
2 Npλ, (Sp)

1
2 (Np)−1Nfvf 〉2

‖(Sf )
1
2 vf‖2

.

Then using the Cauchy-Schwarz inequality and (32) in the proof of Theorem 2,
we have

‖(Sf )−
1
2 wf‖2 = sup

vfbalanced

〈t, (Sp)
1
2 (Np)−1Nfvf 〉2

‖(Sf )
1
2 vf‖2

≤ ‖t‖2 sup
vfbalanced

‖(Sp)
1
2 (Np)−1Nfvf‖2

‖(Sf )
1
2 vf‖2

≺ 1
κ
‖t‖2.

Using Lemma 3 we can derive the following estimate for the condition num-
ber of the FETI preconditioner defined in (33).

Theorem 4 Let λ be a zero mean Lagrange multiplier. Then

〈Np(Sp)−1NT
p λ, λ〉 ≺ 〈Fλ, λ〉 ≺

(
1 +

1
κ

)
〈Np(Sp)−1NpT λ, λ〉.

The condition number estimate O(κ+1
κ ) can be improved in the case where

the fluid side triangulation is finer than the porous side triangulation. This
case has some advantages when κ is small. In order to fix ideas and simplify
notation we analyze in detail the case where the triangulation of the fluid side
is a refinement of the porous side triangulation. In particular, in Theorem 7,
we will prove that the condition of the FETI preconditioned operator is of order
O( κ+1

κ+(hp)2 ) in this simpler situation. The analysis that we will present to prove
Theorem 7 can be extended easily for the case where the fluid side triangulation
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is finer than (and not necessarily a refinement of) the porous side triangulation;
see Remark 8.

We assume that the fluid side discretization on Γ, T f
hf (Ωf )|Γ, is a refinement

of the corresponding porous side discretization, T p
hp(Ωp)|Γ. That is, assume that

hp = rhf for some positive integer r. We will refer to this assumption as the
nested refinement assumption. For j = 1, . . . ,mp, we introduce the normal fluid
velocity φf

j as the P2 bubble function defined on T p
hp(Ωp)|Γ and with support

on the interval ep
j = {0} × [(j − 1)hp, jhp]. Recall that we are using P2/P1

Taylor-Hood discretization on the fluid side. Under the nested refinement as-
sumption we have that φf

j ∈ Zf
hf with Zf

hf defined in (23). Denote Zf
hf ,b

as the

subspace of Zf
hf spanned by all φf

j , j = 1, . . . ,mp, and set Zf
hf ,0

as the subspace

of Zf
hf spanned by functions with zero average on all edges ep

j , j = 1, . . . ,mp.
Note that Zf

hf ,b
and Zf

hf ,0
form a direct sum for Zf

hf and the image ΠZf
hf ,0

is
the zero vector.

Before deriving the condition number estimate of the FETI preconditioner
under the nested refinement assumption we first prove a preliminary lemma.

Lemma 5 Assume that hp = rhf , where r is a positive integer. If vf
Γ,b ∈ Zf

hf ,b

and vf
Γ,b is a balanced function then

〈Sf
Γvf

Γ,b, v
f
Γ,b〉 ≺

κ

(hp)2
〈Sp

ΓΠvf
Γ,b,Πvf

Γ,b〉.

Proof. Let vf
Γ,b =

∑mp

j=1 βjφ
f
j ∈ Zf

hf ,b
⊂ Zf

hf and note that since the basis

functions φf
j , j = 1, . . . ,mp, do not overlap each other on Γ, they are orthogonal

in L2(Γ) and also in H1
0 (Γ). Then

‖vf
Γ,b‖

2
L2(Γ) =

mp∑
j=1

β2
j ‖φ

f
j ‖

2
L2(Γ) � hp

mp∑
j=1

β2
j , (34)

and

|vf
Γ,b|

2
H1(Γ) =

mp∑
j=1

β2
j |φ

f
j |

2
H1

0 (ep
j ) �

1
hp

mp∑
j=1

β2
j . (35)

Using (34), (35) and a interpolation estimate we see that

‖vf
Γ,b‖

2

H
1/2
00 (Γ)

�
mp∑
j=1

β2
j �

1
hp
‖vf

Γ,b‖
2
L2(Γ).

Note also that

〈Sfvf
Γ,b, v

f
Γ,b〉 ≤ af (SHvf

Γ,b,SHvf
Γ,b) � ν‖vf

Γ,b‖
2

H
1/2
00 (Γ)

.
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Denote by zp
Γ,b =

∑mp

j=1 ρjχep
j

the unique piecewise constant function such that

Πvf
Γ,b = zp

Γ,b. Observe that |ρj | � |βj |, j = 1, . . . ,mp. We obtain

〈Sf
Γvf

Γ,b, v
f
Γ,b〉 ≺ ν

hp
‖vf

Γ,b‖
2
L2(Γ) �

ν

hp
‖zp

Γ,b‖
2
L2(Γ) (36)

≺ ν

(hp)2
‖zp

Γ,b‖
2
(H1/2)′(Γ) �

κ

(hp)2
〈Sp

Γzp
Γ,b, z

p
Γ,b〉, (37)

where we have used an inverse inequality for piecewise constant functions.

We now translate Lemma 5 in a result concerning to our dual preconditioner.

Lemma 6 Assume that hp = rhf , where r is a positive integer and let λ be a
zero mean Lagrange multiplier. Then

(hp)2

κ
〈Np(Sp)−1NpT λ, λ〉 ≺ 〈Nf (Sf )−1NfT λ, λ〉.

Proof. We proceed as before. Let t = (Sf )−
1
2 NfT λ and w = Npλ. Then

‖(Sp)−
1
2 w‖2 = sup

zf∈Zf

hf

〈(Sp)−
1
2 w, zf 〉2

‖zp‖2
(38)

= sup
vp balanced

〈w, vf 〉2

‖(Sp)
1
2 vp‖2

= sup
vp balanced

〈λ, Npvp〉2

‖(Sp)
1
2 vp‖2

= sup
vf

b balanced

〈λ, Nfvf
b 〉2

‖(Sp)
1
2 (Np)−1Nfvf

b ‖2

= sup
vf

b balanced

〈(Sf )−
1
2 NfT λ, (Sf )

1
2 vf

b 〉2

‖(Sp)
1
2 (Np)−1Nfvf

b ‖2

≤ ‖t‖2 sup
vf

b balanced

‖(Sf )
1
2 vf

b ‖2

‖(Sp)
1
2 (Np)−1Nfvf

b ‖2

≺ κ

(hp)2
‖t‖2,

where the last step follows from Lemma 5.

From Lemmas 3 and 6, the next theorem follows.

Theorem 7 Assume that hp = rhf , where r is a positive integer. Let λ be a
zero mean Lagrange multiplier, then(

1 +
(hp)2

κ

)
〈Np(Sp)−1NpT λ, λ〉 ≺ 〈Fλ, λ〉 ≺

(
1 +

1
κ

)
〈Np(Sp)−1NpT λ, λ〉.
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We solve the system (26) using preconditioned conjugate gradient. We have
written the algorithm in Figure 2.

Remark 8 Theorem 7 can be extended for the case where hf ≤ 2hp. We only
need to extend the argument given in the proof of Lemma 5. The basic idea in
the proof of Lemma 5 is to associate a bubble function φf

j ∈ Zf
hf to each porous

side element ep
j , j = 1, . . . ,mp, in such a way that we can construct a one to

one and continuous map vf
Γ,b 7→ zp

Γ,b. The bubble functions φf
j , j = 1, . . . ,mp,

can be chosen orthogonal in L2(Γ) and in H1
0 (Γ). This can also be done when

hf ≤ hp. The smaller the hf , the closer is the size of the support of the bubble φf
j

to the size of the element ep
j since more and more elements ef can be associated

to only one element ep. This construction can also be carried out in the case
hp < hf ≤ 2hp where non-orthogonal Taylor-Hood basis functions must be used.
This last situation leads to the appearance of an additional constant that depends
on the non-orthogonality; see Section 8.

Remark 9 We note that Lemma 5 can be used directly to obtain a bound for
the balancing domain decomposition preconditioner similar to the one presented
in Section 6 but with S̃p instead of S̃f in (29); see Proposition 2 of [24]. In
this case an additional variable elimination is needed. We have to eliminate
the component of the normal fluid velocity in the space Zf

hf ,0
and work with

the Schur complement with respect to the space Zf
hf ,b

. This is rather difficult
to implement (we can use Lagrange multipliers in this case). Then passing
to the dual preconditioner permit us to take advantage of the case where the
fluid side discretization on Γ is a refinement of the corresponding porous side
discretization.

Remark 10 Theorems 2, 4 and 7 are also valid for the case αf > 0 in (3).
To see this we need to compare, for different values of αf , the energy of dis-
crete extensions for a given normal velocity defined on Γ. Given the outward
normal velocity vf

Γ on Γ, let SHαf vf
Γ denote the discrete harmonic extension

in the sense of (af
αf , bf ), that is, the solution of problem (21) with af replaced

by af
αf . Recall that af = af

0 , where af
0 = aαf when αf = 0, and therefore,

SHvf
Γ = SH0v

f
Γ. Note that in (21) we have imposed the natural boundary con-

dition τT D(SHuf )ηf = 0 on Γ. Now we define another extension denoted by
ŜHvf

Γ. Given the outward normal velocity vf
Γ on Γ, let ŜHvf

Γ be the (af , bf )-
discrete harmonic extension given by the solution of (21) with the boundary
condition ŜHvf

Γ · τ = 0. For both SH and ŜH are imposed essential boundary
condition vf

Γ for the normal component on Γ. The difference between them is in
how the boundary condition is imposed for the tangential component on Γ. For
the SH is imposed homogeneous natural boundary condition, while for ŜH is
imposed homogeneous essential boundary condition.
Both extensions, SHαf and ŜH, satisfy the zero discrete divergence and bound-
ary conditions in (21). Using this fact and the minimization property of the
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1. Initialize

x(0) = 0 (No coarse problem)

λ(0) = c

2. Iterate k = 1, 2, . . . until convergence

Precondition: y(k−1) = (Np)†(Sp)(NpT )†d(k−1)

βk = 〈y(k−1), d(k−1)〉/〈y(k−2), d(k−1)〉 [β(1) = 0]

r(k) = y(k−1) + β(k)r(k) [r(1) = y(0)]

α(k) = 〈y(k−1), d(k−1)〉/〈d(k), F r(k)〉
x(k) = x(k−1) + α(k)r(k)

d(k) = d(k−1) − α(k)Fr(k)

Figure 2: Implementation of the preconditioned conjugate gradient algorithm
for the system (26) involving the FETI preconditioner (33).

(af
αf , bf )-discrete harmonic extension SHαf and the (af , bf )-discrete harmonic

extension ŜH we get

af (SHvf
Γ,SHvf

Γ) = af
0 (SHvf

Γ,SHvf
Γ) (by definition)

≤ af
0 (SHαf vf

Γ,SHαf vf
Γ) (by the minimization property of SH)

≤ af
αf (SHαf vf

Γ,SHαf vf
Γ) (αf > 0)

≤ af
αf (ŜHvf

Γ, ŜHvf
Γ) (by the minimization property of SHαf )

= af
0 (ŜH0v

f
Γ, ŜH0v

f
Γ) (because ŜHuf · τ f = 0 on Γ)

� ν‖vf
Γ‖

2

H
1/2
00 (Γ)

� af (SH0v
f
Γ,SHvf

Γ).

The last two equivalences follow from properties of the (af , b)-discrete harmonic
extensions SH and ŜH (which coincides with the discrete Stokes harmonic ex-
tension); see [26, 38]. The two equivalences appearing above are independent of
the permeability, fluid viscosity and mesh sizes. Then, the energy of the (af

αf , b)-
discrete harmonic extensions is equivalent to the energy of the (af , b)-discrete
harmonic extension, i.e., the discrete Stokes harmonic extension. This equiva-
lence guarantees the extensions of Theorems 2, 4 and 7 to the case αf > 0.

8 Numerical Results

In this section we present numerical tests in order to verify the estimates in
Theorems 2, 4 and 7. We consider Ωf = (1, 2)× (0, 1) and Ωp = (0, 1)× (0, 1).
See [11] and [25] for examples of exact solutions and compatible divergence
and boundary data. Note that the reduced systems (15) and (26) involve only
degrees of freedom on the interface Γ. In our test problems we compute the
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eigenvalues of the preconditioned operators.

To solve both reduced systems (15) and (26) we can use the PCG algo-
rithms described in Figures 1 and 2. Recall that the original system (11) is a
“three times” saddle point problem. Note that since the finite element basis of
Mf

hf ×Mp
hp and Λhp

have no zero mean, the finite element matrix in (13) has
the kernel composed by constant pressures in Ω = int(Ωf ∪ Ωp) and constant
Lagrange multipliers on Γ. The corresponding system is solved up to a constant
pressure and a constant Lagrange multiplier. These constants can be recovered
when imposing the zero average pressure constraint; see [25].

hf ↓ hp → 3−1 ∗ 2−0 3−1 ∗ 2−1 3−1 ∗ 2−2 3−1 ∗ 2−3 3−1 ∗ 2−4

2−1 ∗ 2−0 1, 1.0189(3) 1, 1.0198(3) 1, 1.0194(3) 1, 1.0193(3) 1, 1.0193(3)
2−1 ∗ 2−1 1, 1.0209(3) 1, 1.0200(3) 1, 1.0197(3) 1, 1.0196(3) 1, 1.0196(3)
2−1 ∗ 2−2 1, 1.0217(3) 1, 1.0205(3) 1, 1.0202(3) 1, 1.0201(3) 1, 1.0201(3)
2−1 ∗ 2−3 1, 1.0220(3) 1, 1.0208(3) 1, 1.0204(3) 1, 1.0203(3) 1, 1.0203(3)
2−1 ∗ 2−4 1, 1.0221(3) 1, 1.0209(3) 1, 1.0205(3) 1, 1.0204(3) 1, 1.0204(3)

Table 1: Minimum and maximum eigenvalues for the BDD preconditioned op-
erator. Here κ = 1 and αf = 0.

8.1 BDD preconditioner

In the case of the BDD preconditioner (29) for (15), we solve a coarse problem
before reducing the system to ensure balanced velocities at the beginning of the
CG iterations.

hf ↓ hp → 3−1 ∗ 2−1 3−1 ∗ 2−2 3−1 ∗ 2−3 3−1 ∗ 2−4

2−1 ∗ 2−0 1, 21.0147(3) 1, 20.6035(3) 1, 20.3686(3) 1, 20.2893(3)
2−1 ∗ 2−1 1, 21.3303(6) 1, 20.8549(7) 1, 20.6550(7) 1, 20.5836(7)
2−1 ∗ 2−2 1, 22.0017(6) 1, 21.3392(9) 1, 21.1424(10) 1, 21.0735(10)
2−1 ∗ 2−3 1, 22.2367(6) 1, 21.6045(10) 1, 21.3626(9) 1, 21.2955(10)
2−1 ∗ 2−4 1, 22.3479(6) 1, 21.7006(10) 1, 21.4666(11) 1, 21.3929(9)

Table 2: Minimum and maximum eigenvalues for the BDD preconditioned op-
erator. Here κ = 10−3 and αf = 0.

We consider αf = 0 and ν = 1, and different values of hf and hp with non-
matching grids across the interface Γ; see Table 1 for the results when κ = 1,
Table 2 for κ = 10−3 and Table 3 for the case κ = 10−5. These three tables
reveal growth of order O(1 + 1

κ ) in κ and hence, verify the sharpness of the
estimate in Theorem 2.
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hf ↓ hp → 3−1 ∗ 2−1 3−1 ∗ 2−2 3−1 ∗ 2−3 3−1 ∗ 2−4

2−1 ∗ 2−0 1, 1977.08(3) 1, 1945.05(3) 1, 1932.10(3) 1, 1928.32(3)
2−1 ∗ 2−1 1, 1997.27)(6) 1, 1972.77(7) 1, 1961.34(7) 1, 1957.88(7)
2−1 ∗ 2−2 1, 2053.57(6) 1, 2021.03(13) 1, 2010.27(17) 1, 2006.90(17)
2−1 ∗ 2−3 1, 2079.68(6) 1, 2044.05(13) 1, 2032.42(21) 1, 2029.13(31)
2−1 ∗ 2−4 1, 2090.10(6) 1, 2054.33(13) 1, 2042.26(22) 1, 2038.90(28)

Table 3: Minimum and maximum eigenvalues for the BDD preconditioned op-
erator. Here κ = 10−5 and αf = 0.

hf ↓ hp → 3−1 ∗ 2−1 3−1 ∗ 2−2 3−1 ∗ 2−3 3−1 ∗ 2−4

2−1 ∗ 2−0 1.0000, 1.0208(3) 1.0000, 1.0194(3) 1.0000, 1.0193(3) 1.0000, 1.0193(3)
2−1 ∗ 2−1 1.0017, 1.0200(3) 1.0000, 1.0197(3) 1.0000, 1.0196(3) 1.0000, 1.0196(3)
2−1 ∗ 2−2 1.0026, 1.0205(3) 1.0004, 1.0202(3) 1.0000, 1.0200(3) 1.0000, 1.0201(3)
2−1 ∗ 2−3 1.0027, 1.0208(3) 1.0007, 1.0204(3) 1.0001, 1.0203(3) 1.0000, 1.0203(3)
2−1 ∗ 2−4 1.0028, 1.0209(2) 1.0007, 1.0205(3) 1.0002, 1.0204(3) 1.0000, 1.0204(3)
2−1 ∗ 2−5 1.0028, 1.0209(2) 1.0007, 1.0206(3) 1.0002, 1.0205(3) 1.0000, 1.0204(3)

Table 4: Minimum and Maximum eigenvalues of the FETI preconditioned op-
erator. Here κ = 1 and αf = 0.

8.2 FETI preconditioner

In the case of the FETI preconditioner (33), we solve the reduced system (26)
up to a constant Lagrange multiplier and a constant pressure. These constants
are recovered after enforcing zero mean pressure on Ω = int (Ω

f ∪Ω
p
); see [25].

We recall that the FETI method can be viewed as the dual preconditioner coun-
terpart of the BDD preconditioner. We repeat the same experiments mentioned
above for the latter preconditioner.

We consider αf = 0, ν = 1 and different values of hf and hp with nonmatch-
ing grids across the interface Γ; see Table 4 for the results when κ = 1, Table 5
for κ = 10−3 and Table 6 for the case κ = 10−5. Note that in Tables 4, 5 and
6 the minimum eigenvalues are strictly greater than one when hf ≤ 2hp, and
the value of the minimum eigenvalues seem to stabilize very quick for smaller
hf with fixed hp. This confirms the extension of Theorem 7 for the case where
hf ≤ 2hp; see Remark 8. In Table 7 we present the numerical results where one

hf ↓ hp → 3−1 ∗ 2−1 3−1 ∗ 2−2 3−1 ∗ 2−3 3−1 ∗ 2−4

2−1 ∗ 2−0 1.000, 20.7608(3) 1.000, 20.4405(3) 1.000, 20.3110(3) 1.000, 20.2732(3)
2−1 ∗ 2−1 2.707, 20.9627(5) 1.000, 20.7177(7) 1.000, 20.6034(7) 1.000, 20.5688(7)
2−1 ∗ 2−2 3.634, 21.5257(5) 1.425, 21.2003(10) 1.000, 21.0927(12) 1.000, 21.0590(12)
2−1 ∗ 2−3 3.714, 21.7868(5) 1.651, 21.4305(9) 1.106, 21.3142(11) 1.000, 21.2813(12)
2−1 ∗ 2−4 3.760, 21.891(5) 1.663, 21.5333(9) 1.162, 21.4126(11) 1.026, 21.3790(12)
2−1 ∗ 2−5 3.771, 21.937(5) 1.673, 21.5768(9) 1.164, 21.4561(11) 1.040, 21.4220(12)

Table 5: Minimum and Maximum eigenvalues of the FETI preconditioned op-
erator. Here κ = 10−3 and αf = 0.
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hf ↓ hp → 3−1 ∗ 2−2 3−1 ∗ 2−3 3−1 ∗ 2−4

2−1 ∗ 2−0 1.00, 1945.05(3) 1.00, 1932.10(3) 1.00, 1928.32(3)
2−1 ∗ 2−1 1.00, 1972.77(7) 1.00, 1961.34(7) 1.00, 1957.88(7)
2−1 ∗ 2−2 43.45, 2021.03(11) 1.00, 2010.27(17) 1.00, 2006.90(17)
2−1 ∗ 2−3 66.10, 2044.05(11) 11.58, 2032.42(20) 1.00, 2029.13(37)
2−1 ∗ 2−4 67.29, 2054.33(10) 17.20, 2042.26(19) 3.64, 2038.90(35)
2−1 ∗ 2−5 68.32, 2058.68(10) 17.42, 2046.61(10) 5.04, 2043.20(36)

Table 6: Minimum and Maximum eigenvalues of the FETI preconditioned op-
erator. Here κ = 10−5 and αf = 0.

of the meshes on the interface is a refinement of the other side triangulation on
the interface. We observe a behavior similar to the behavior of Table 6 with a
bigger value for the minimum eigenvalue when hf ≤ hp. This verifies the esti-
mates of Theorem 7. This shows that the FETI preconditioner is scalable for
the parameters faced in practice, i.e., the fluid side mesh finer than the porous
side mesh and a small permeability κ. We conclude that the numerical exper-
iments concerning the FETI preconditioner reveal the sharpness of the results
obtained in Theorems 4 and 7 and Remark 8.

hf ↓ hp → 2−1 ∗ 2−1 2−1 ∗ 2−2 2−1 ∗ 2−3 2−1 ∗ 2−4

2−1 ∗ 2−0 1.00, 2002.47 1.00, 1961.35 1.00, 1937.86 1.00, 1929.93
2−1 ∗ 2−1 690.43, 2034.03 1.00, 1986.49 1.00, 1966.50 1.00, 1959.36
2−1 ∗ 2−2 627.36, 2101.17 176.56, 2034.92 1.00, 2015.24 1.00, 2008.35
2−1 ∗ 2−3 639.68, 2124.67 151.62, 2061.45 44.91, 2037.26 1.00, 2030.55
2−1 ∗ 2−4 642.44, 2135.79 154.45, 2071.06 38.04, 2047.66 11.98, 2040.29
2−1 ∗ 2−5 643.47, 2140.73 154.86, 2075.43 38.73, 2051.91 10.20, 2044.66

Table 7: Minimum and Maximum eigenvalues of the FETI preconditioned op-
erator. Here κ = 10−5 and αf = 0. The refinement condition of Theorem 7 is
satisfied under the diagonal.

Recall that we have assumed αf = 0. Now consider αf > 0. Numerical
experiment were performed with αf > 0 reveling results similar to the ones
presented above for the case αf = 0. We only include Table 8 which shows the
extreme eigenvalues of the FETI preconditioned operator for the case αf = 1,
ν = 1 and κ = 10−5. This table presents a similar behavior to the one with
αf = 0 in Table 6 and hence, confirms Remark 10 which says that the parameter
αf does not play much role for preconditioning.

9 On the multidomain case

The methods introduced in the previous sections considered only the two-
subdomain case where discrete Stokes and Darcy indefinite subproblems are
solved exactly in each subdomain and in each CG iteration. This might be very
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hf ↓ hp → 3−1 ∗ 2−1 3−1 ∗ 2−2 3−1 ∗ 2−3 3−1 ∗ 2−4

2−1 ∗ 2−0 1.00, 1705.47 1.00, 1678.07 1.00, 1666.84 1.00, 1663.55
2−1 ∗ 2−1 162.74, 1814.26 1.00, 1787.53 1.00, 1776.50 1.00, 1773.22
2−1 ∗ 2−2 251.56, 1843.50 41.65, 1812.69 1.00, 1801.61 1.00, 1798.29
2−1 ∗ 2−3 267.47, 1849.46 63.63, 1816.43 11.24, 1804.66 1.00, 1801.34
2−1 ∗ 2−4 272.29, 1850.65 66.82, 1817.38 16.75, 1805.30 3.58, 1801.91
2−1 ∗ 2−5 273.34, 1851.08 67.99, 1817.68 17.37, 1805.57 4.97, 1802.14

Table 8: Minimum and Maximum eigenvalues of the FETI preconditioned op-
erator. Here κ = 10−5 and αf = 1.

costly for large large subproblems since direct solvers or an accurate iterative
solvers for the indefinite have to be used. In this Section we show that the
methodology developed for the two-subdomain case can be developed also for
the multidomain case. A complete analysis (using tools developed in Section 7)
and extensive numerical experiments for the multidomain case will be object of
future research and presented elsewhere.

Figure 3: Global interface Γ̃ that includes all local interfaces and the
Stokes/Darcy interface Γ.

We consider only the FETI method of Section 7 and the matching grids
case. Assume that T f

hf and T p
hp coincide on the interface Γ. Let {Ωi

j}ni

j=1 be
a geometrically conforming substructures of Ωi, i = f, p. We also assume that
{Ωf

j }nf

j=1∪{Ω
p
j}np

j=1 form a geometrically conforming decomposition of Ω, hence,
the two decomposition are aligned on the interface Γ. We define the local inner
interfaces as Γi

j = ∂Ωi
j \ ∂Ωi, j = 1, . . . , ni, i = f, p. We also define

Γ̃ =
nf⋃
j=1

Γf
j ∪

np⋃
j=1

Γp
j ∪ Γ.

See Figure 3. In order to simplify the presentation we assume for the fluid region,
the spaces Xf

hf and Mf
hf are the P2/P0 triangular finite elements while for the

porous region, the spaces Xp
hp ⊂ Xp and Mp

hp ⊂ L2(Ωp) are the lowest order
Raviart-Thomas finite elements based on triangles. Similar as in the previous
sections, we decompose the velocity and pressure spaces as follows:

• Xf
I : interior velocities in the subdomains {Ωf

j }nf

j=1.

• XfeΓ: interface velocities on Γ̃ ∩ Ω
f
.

• Xp
I : interior velocities in the subdomains {Ωp

j}np

j=1.

• XpeΓ: interface velocities on Γ̃ ∩ Ω
p
.
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• M i
I , (i = p, f): interior zero mean pressure in each subdomain {Ωi

j}ni

j=1,
i = f, p.

• M i
0, (i = p, f): constant pressure in each subdomain {Ωi

j}ni

j=1, i = f, p.

• MI = Mf
I ×Mp

I

• XI = Xf
I ×Xp

I , XeΓ = XfeΓ ×XpeΓ, MI = Mf
I ×Mp

I and M0 = Mf
0 ×Mp

0 .

After imposing the mortar condition as in Section 4 we can reduce (11) to a
Schur complement system on the interface Γ̃,

S̃eΓueΓ = b̃eΓ (39)

which is the multidomain generalization of the reduced system (15).

The Γ̃-interface velocity space XeΓ can be decompose in primal and dual de-
grees of freedom, i.e., XeΓ = XC ⊕X∆ where XC includes the function which
are continuous with respect to the primal degrees of freedom. The primal vari-
ables for the fluid velocity field are the continuity of both components of the
fluid velocities at the corners and the continuity of the mean normal flux on
each face of the subdomains {Ωf}j}nf

j=1. For the the porous side, the primal
variables are the continuity of the mean normal flux on the each face of the
subdomains {Ωp}j}np

j=1; see [30, 31, 32, 41]. For faces of the subdomains on Γ,
only the continuity of the mean fluxes are imposed. . The space X∆ includes
the remaining fluid side velocity degrees of freedom and the remaining porous
media velocity degrees of freedom.

Functions in X∆ do not satisfy the continuity requirements in each region
and across interface Γ̃ ∩ Ωp on the the Darcy side (the slave side). These con-
tinuity requirements can be enforced using a Lagrange multiplier λ̃ define on Γ̃
by the equation

B∆v∆ = 0.

We ensure that this condition coincides with the last equation of (13) that
corresponds to the flux continuity across the Stokes/Darcy interface Γ. On
the Stokes/Darcy interface Γ we use the same Lagrange multiplier of the dual
formulation (26). Proceeding as in [30] we can obtain a reduced system of the
form

F̃ λ̃ = b̃

which corresponds to the multidomain version of (26). The preconditioner op-
erator is of the form

B∆S̃eΓBT
∆,

where S̃eΓ was introduced in (39).
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10 Conclusions and Final Comments

We consider the problem of coupling fluid flows with porous media flows with
Beavers-Joseph-Saffman condition on the interface. We choose a discretization
consisting of Taylor-Hood finite elements of order two on the free fluid side and
the lowest order Raviart-Thomas finite element on the porous fluid side. The
meshes are allowed to be nonmatching across the interface.

We design and analyze two preconditioners for the resulting symmetric linear
system. We note that the original linear system is symmetric indefinite and in-
volves three Lagrange multipliers: one for each subdomain pressure and a third
one to impose the weak conservation of mass across the interface Γ; see Section 1.

One preconditioner is based on BDD methods and the other one is based on
FETI methods. In the case of the BDD preconditioner, the energy is controlled
by the Stokes side, while in the FETI preconditioner, the energy is controlled
by the Darcy system; see Theorems 2 and 4. In both cases a bound C1(κ+1

κ )
is derived. Furthermore, under the assumption that the fluid side mesh on the
interface is finer than the corresponding porous side mesh, we derive the better
bound C2( κ+1

κ+(hp)2 ) for the FETI preconditioner; see Theorem 7 and Remark
8. This better bound also shows that the FETI preconditioner is more scalable
for parameters faced in practice, e.g., problems with small permeability κ and
where the fluid side mesh is finer than the porous side mesh. The constants C1

and C2 above are independent of the fluid viscosity ν, the mesh ratio across the
interface, and the permeability κ.
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