Wheelchairs and Other Mobility Assistance
Dmitry A. Sinyukov*, Karen L. Troy†, Matthew P. Bowers†, Taskin Padir*

*NORTHEASTERN UNIVERSITY, BOSTON, MA, UNITED STATES †WORCESTER POLYTECHNIC INSTITUTE, WORCESTER, MA, UNITED STATES

Abstract
Mobility is required for a number of activities of daily living (ADLs). Due to various health conditions, however, many people are unable to move around independently without certain mobility aid devices. This chapter focuses on traditional mobility aids, such as manual and electric wheelchairs, basic walking aids (canes, crutches, and walkers), as well as advanced assistive technologies, such as wheelchair navigation via low-throughput human-machine interfaces (brain-computer interface, single switch, silent speech interfaces, etc.), and stair-climbing wheelchairs.
13.3.1 Modeling Electric Wheelchairs ........................................................................................................380
13.3.2 Advanced Wheelchair Motion Control ................................................................................................384

13.4 Wheelchairs With Low-Throughput HMI's ..............................................................................................385
13.4.1 Modeling Low-Throughput Human-Machine Interfaces .....................................................................386
13.4.2 Direct Steering Control .........................................................................................................................387
13.4.3 Shared Steering Control .........................................................................................................................388
13.4.4 Shared Position Control .........................................................................................................................391

13.5 Stair-Climbing Wheelchairs ....................................................................................................................393
13.5.1 Track-Based Mechanisms ...................................................................................................................395
13.5.2 Wheel Cluster-Based Mechanisms .......................................................................................................395
13.5.3 Leg-Based Mechanisms .......................................................................................................................398
13.5.4 Hybrid Mechanisms .............................................................................................................................400
13.5.5 Nonconventional Wheel Geometry Mechanisms ................................................................................403

13.6 Assisted Walking ....................................................................................................................................407
13.6.1 Types of Walking Aids ........................................................................................................................407
13.6.2 Device Selection ....................................................................................................................................408
13.6.3 Problems Associated With Walking Aids .............................................................................................410

13.7 The Challenge of Innovation in (Semi-)Autonomous Wheelchair Design ..............................................410

References .....................................................................................................................................................412

Biomechatronics. https://doi.org/10.1016/B978-0-12-812939-5.00013-6
© 2019 Elsevier Inc. All rights reserved.

[chapter content intentionally omitted]

References


[34] D.A. Sinyukov, Semi-Autonomous Robotic Wheelchair Controlled with Low Throughput Human-Machine Interfaces, Worcester Polytechnic Institute, 2017.


[64] The TopChair-S electric wheelchair (Online), Available from: http://www.topchair.fr/en/ (accessed 05.03.18).

[65] CaterWil GTS3 EXPORT j Caterwil (Online), Available from: http://caterwil.com/caterwil-gts3-export/ (accessed 05.03.18).
[66] SCEWO – Stair Climbing Wheelchair (Online), Available from: https://scewo.ch/ (accessed 05.03.18).


[68] iBOT Poised for Comeback j Toyota USA Newsroom (Online), Available from: http://pressroom.toyota.com/releases/toyota-deka-research-partnership-may21.htm, 2016 (accessed 05.03.18).


[70] SCOIATTOLO L j TGR – Strumenti di liberta’ (Online), Available from: http://tgr.it/prodotti/scoiattolo-largo/ (accessed 05.03.18).

[71] C-Max U1 by AATGB, the Push Wheelchair With Stair Climbing Function (Online), Available from: https://www.aatgb.com/c-max-u1.html (accessed 05.03.18).


