Prediction of UH-60A blade loads: an insight on Confluence Algorithm to correct internally generated airloads

Maria Chierichetti Massimo Ruzzene Olivier Bauchau
Georgia Institute of Technology

Chance McColl Douglas Palmer
Technical Data Analysis, Inc.
Introduction

- **Objectives**
 - Develop an effective procedure for strain mapping using experimental measurements
 - Achieve accurate internal loads predictions using simplified aerodynamic and CSD models

- **Motivation**
 - Improve stress/strain predictions to be used for Condition Based Maintenance for rotating components

Maria Chierichetti
Outline

- Overview of Load Confluence Algorithm
- UH-60 numerical model
- Validation of performance of LCA for level-flight
 - High speed condition (C-8534)
 - High thrust condition (C-9017)
 - Low speed condition (C-8513)
Concept

Step 1

Step 2

Maria Chierichetti
The Load Confluence Algorithm

- Measure strains
- Compare measurements with predictions
- Iteratively increment applied loads

DYM ORE
Full non-linear mechanical algorithm

Input Airloads, F(t)

- A simplified airload distribution can be applied (e.g., lifting line theory, as opposed to more computationally-intensive CFD) and iteratively modified to reach a solution that matches measured response

Dynamic analysis

Predicted strains, e

| e - ê | < tolerance?

Iterate until convergence is reached

Linearized loads update

Compute corrected loads, DF(t)

Compute strain increments
De = e - ê

Convergence reached

Strain mapping algorithm

Measured strains (ê) and state parameters

Blade (flapwise, edgewise, torsion), hub/controls (pitch link, pitch horn, lead-lag damper, etc.), fuselage (accel)

Maria Chierichetti
Strain Mapping Algorithm

- Compute a linearized increment to applied loads
 - Modal approximation of response
 - Expansion in Fourier’s series

- Obtain algebraic relations between Fourier’s coefficients of response and applied loads

- Increment applied loads

Parameters
- # modes: \(m \)
- # harmonics: \(h \)
Use of simplified airloads is sufficient for accurate prediction of internal loads because of iterative corrections of applied loads!!!
High speed condition C-8534

Flap moment along span (15 sensors, 10 modes, 4 harmonics)

- @ 20%
- @ 40%
- @ 70%
- @ 30%
- @ 60%
- @ 90%

Before LCA

After LCA

Measured
High speed condition C-8534

Lag moment along span (15 sensors, 10 modes, 4 harmonics)

@ 20%

@ 40%

@ 70%

@ 30%

@ 60%

@ 90%

Measured

Before LCA

After LCA
High speed condition C-8534

Torsional moment along span (15 sensors, 10 modes, 4 harmonics)

@ 30%

@ 50%

@ 70%

@ 90%

Before LCA

After LCA

Measured
Comments

- 3-4/rev flap moment predicted within 5%
Comments

- 3-4/rev flap moment predicted within 5%
- 4/rev lag moment predicted within 10%, 3-5/rev discrepancies compatible with CFD/CSD predictions

Lag moment

Maria Chierichetti
High speed condition C-8534

Comments

- 3-4/rev flap moment predicted within 5%
- 4/rev lag moment predicted within 10%, 3-5/rev discrepancies compatible with CFD/CSD predictions
- 3-4-5/rev torsion moment improved, but discrepancies due to lack of experimental data
Analysis of LCA convergence

- Number of harmonics: 4
- Number of modes: 6

Torsional moment

Flap moment

Lag moment
Analysis of LCA convergence

- Number of harmonics: 6
- Number of modes: 6

Torsional moment

Flap moment

Lag moment

Maria Chierichetti
Analysis of LCA convergence

- Number of harmonics: 4
- Number of modes: 10

- Torsional moment
- Flap moment
- Lag moment

Maria Chierichetti
Analysis of LCA convergence

- Torsional moment at 70% span

Before LCA

4 harmonics, 4 modes

6 harmonics, 4 modes

4 harmonics, 10 modes

After LCA

Measured

Maria Chierichetti
Analysis of LCA convergence

4 harmonics, 10 modes
- Lowest iterations
- Lowest oscillations

Before LCA

After LCA

Measured
High thrust condition C-9017

Torsional moment along span (11 sensors, 8 modes, 4 harmonics)

Before LCA

After LCA

@ 30%

@ 50%

@ 70%

@ 90%
High thrust condition C-9017

Flap moment along span (11 sensors, 8 modes, 4 harmonics)

@ 10%
@ 20%
@ 40%
@ 60%
@ 70%

Measured

After LCA

Before LCA
High thrust condition C-9017

Lag moment along span (11 sensors, 8 modes, 4 harmonics)

Before LCA

Measured

After LCA

@ 10%

@ 70%

@ 60%
Comments

- # sensors reduced to 11 (30% reduction)
- Improvement in accuracy of flap moment, large discrepancies due to lack of measurements
- Critical prediction of lag moment because of lack of measurements
- 3-4-5/rev torsion moment predicted within 20%, discrepancies compatible with CFD/CSD analysis
Low speed condition C-8513

Flap moment along span (15 sensors, 10 modes, 4 harmonics)

Before LCA

After LCA

Measured

@ 20%

@ 40%

@ 60%

@ 90%

@ 30%

@ 50%

@ 70%
Low speed condition C-8513

Lag moment along span (15 sensors, 10 modes, 4 harmonics)

@ 20%

@ 40%

@ 70%

@ 30%

@ 60%

@ 90%

After LCA

Before LCA

Measured
Low speed condition C-8513

Torsional moment along span (15 sensors, 10 modes, 4 harmonics)

@ 30%

@ 50%

@ 70%

@ 90%

Before LCA

Measured

After LCA
Low speed condition C-8513

Comments

- 3-4/rev flap moment predicted within 5%

Flap moment

3/rev

4/rev

5/rev

Maria Chierichetti
Comments

- 3-4/rev flap moment predicted within 5%
- 3-4/rev lag moment predicted within 5%, 5/rev within 20% due to unmodeled dynamics
Comments

- 3-4/rev flap moment predicted within 5%
- 3-4/rev lag moment predicted within 5%, 5/rev within 20% because of unmodeled dynamics
- 3-4-5/rev torsion moment improved, but discrepancies due to lack of experimental data

Low speed condition C-8513

Torsional moment

After LCA

Measured
Conclusions

- Choice of # of modes and # of harmonics critical for convergence
- Availability of sufficient # of sensors critical for accuracy
- Fast, accurate and general procedure
- Future work: influence on pitch-link loads
Acknowledgements

This research is supported by the Naval Air Systems command at the Patuxent River Naval Air Station of United States of America, through the Small Business Innovative Research (SBIR) program in collaboration with Technical Data Analysis, Inc.

Maria Chierichetti