Proofs in Contemporary Math
W. J. Martin
April 4, 2009

MA196X Problem Set 3

Instructions: Please first read the rules on the presentation of assignments in the course. Then complete as many of these as you can by Friday, April 10th. After that, I will still accept problems until the sample solutions have been distributed.

Note: Always identify each problem by its problem number and re-state the problem precisely before giving its solution.

13. (a) Prove: For all sets A and B and all relations r, s from A to B, we have $\text{Dom}(r \cup s) = \text{Dom}(r) \cup \text{Dom}(s)$. (Then show that, without further proof, it follows that $\text{Im}(r \cup s) = \text{Im}(r) \cup \text{Im}(s)$.)

(b) Show that the following proposition is false: For all sets A and B and all relations r, s from A to B, we have $\text{Dom}(r \cap s) = \text{Dom}(r) \cap \text{Dom}(s)$.

14. Prove: If r is a relation on set A with $\text{Dom}(r) = A$ and r is both symmetric and transitive, then r is reflexive.

15. Prove: If A is any set and r is a relation on A, then r is both symmetric and antisymmetric if and only if $r \subseteq \text{id}_A := \{(a, a) : a \in A\}$.

16. Suppose A is a non-empty set and consider the relation r defined on $\mathcal{P}(A)$ by

$$ArB \iff A \cap B = \emptyset.$$

In parts (a)-(e), decide whether the given statement is TRUE or FALSE. If it is true, provide a proof; if it is false, provide a simple counterexample.

(a) r is reflexive

(b) r is irreflexive

(c) r is symmetric

(d) r is antisymmetric

(e) r is transitive

17. Let A, B and C be sets. Let r be a relation from A to B and let s be a relation from B to C. For these objects, define

$$s \circ r = \{(a, c) \in A \times C \mid \exists b \in B \ (arb \land bsc)\}.$$

Prove: For any A, B, C and any $r \subseteq A \times B$ and $s \subseteq B \times C$, $\text{Dom}(s \circ r) \subseteq \text{Dom}(r)$ and $\text{Im}(s \circ r) \subseteq \text{Im}(s)$.

1
18. With notation as in the previous problem, prove: if \(B = C \) and \(s = \text{id}_B \), then \(s \circ r = r \).

19. With notation as in Problem 17, prove: if \(\text{Im}(r) = \text{Dom}(s) \), then \(\text{Dom}(s \circ r) = \text{Dom}(r) \) and \(\text{Im}(s \circ r) = \text{Im}(s) \). [NOTE: If you have previously solved Problem 17, then you may use its result in your solution.]

20. Let \(A \) be a non-empty set and let \(r \) and \(s \) be relations on \(A \). For each of the following propositions, decide whether the statement is true or false. If it is true, prove it; if the statement is false, give a simple counterexample.

(a) If both \(r \) and \(s \) are reflexive, then \(s \circ r \) is reflexive.
(b) If both \(r \) and \(s \) are irreflexive, then \(s \circ r \) is irreflexive.
(c) If both \(r \) and \(s \) are symmetric, then \(s \circ r \) is symmetric.
(d) If both \(r \) and \(s \) are antisymmetric, then \(s \circ r \) is antisymmetric.
(e) If both \(r \) and \(s \) are transitive, then \(s \circ r \) is transitive.

21. In number theory, we make extensive use of the “exactly divides” relation. The relation \(\parallel \subseteq \mathbb{Z} \times \mathbb{Z} \) is defined as follows: for a prime \(p \), and integer \(n \) and a positive integer \(k \),
\[
p^k | n \leftrightarrow [(p^k | n) \land (\forall \ell \in \mathbb{Z}) (\ell > k \rightarrow p^\ell \not| n)];
\]
in all other cases, \(m | n \) is false.

(a) Find \(\text{Dom}(\parallel) \). Explain briefly.
(b) Find \(\text{Im}(\parallel) \). Explain briefly.
(c) Show that, for any prime \(p \) and any \(k \geq 1 \), the set \(\{ n \in \mathbb{Z} : p^k | n \} \) is infinite.
(d) For \(n \in \mathbb{Z} \), arbitrary but fixed, what can you conclude about the size of the set \(\{ m \in \mathbb{Z} : m | n \} \)? Justify.

22. Let \(m \) and \(n \) be positive integers. Let \(r \) be the relation “congruence modulo \(m \)” on \(\mathbb{Z} \) and let \(s \) be the relation “congruence modulo \(n \)” on \(\mathbb{Z} \) (see p44 for the definition). Prove: if \(n | m \), then \(r \subseteq s \).

23. Prove: For any positive integer \(n \) and for all integers \(a, b, c, d \), if \(a \equiv b \mod n \) and \(c \equiv d \mod n \), then
\[
a + c \equiv b + d \mod n \quad \text{and} \quad ac \equiv bd \mod n.
\]

24. Let \((A, \preceq)\) be a finite poset (i.e., \(A \) is a finite set and \(\preceq \) is a partial order relation on \(A \)). Prove that there exists a linear extension for \(\preceq \): there exists a total order relation \(\preceq_* \), extending \(\preceq \) (i.e., \(\preceq \subseteq \preceq_* \subseteq A \times A \)). (See p61 for the definition.)