Cometric Association Schemes

William J. Martin

Department of Mathematical Sciences
and
Department of Computer Science
WPI

UVM Combo Seminar
Outline

Motivating example
Outline

Motivating example

Definitions and Parameters

 Introduction
 The Bannai/Ito Conjectures
 The known examples
Outline

Motivating example

Definitions and Parameters
 Introduction
 The Bannai/Ito Conjectures
 The known examples

Structure of Imprimitive Cometric Schemes
 Dismantlability
Outline

Motivating example

Definitions and Parameters
 Introduction
 The Bannai/Ito Conjectures
 The known examples

Structure of Imprimitive Cometric Schemes
 Dismantlability

Recent Work
 The Ideal
 Main Result
 Splitting Fields
 Spherical Codes
 Proof
The Leech lattice

- even unimodular lattice in \mathbb{R}^{24}
- kissing number 196,560 (optimal)
- automorphism group is a double cover of Co_1 (order $2^9 \cdot 8,315,553,613,086,720,000$)

We will focus on the spherical code consisting of the 196,560 (scaled) shortest vectors.
Shortest vectors

The 196,560 norm two vectors:

- \(\frac{1}{\sqrt{8}} (\pm 2^8, 0^{16}) \) — support is also support of a Golay codeword, even num of \(-\) signs \((2^7 \cdot 759)\)
- \(\frac{1}{\sqrt{8}} (\mp 3, \pm 1^{23}) \) — upper signs taken on support of a Golay codeword \((2^{12} \cdot 24)\)
- \(\frac{1}{\sqrt{8}} (\pm 4^2, 0^{22}) \) — any two positions, any signs \((\binom{24}{2} \cdot 2^2)\)

Scale these to unit vectors to get \(X \subset S^{23} \). Among these vectors, there are only 6 non-zero angles. These determine six highly symmetric graphs on \(X \).
Association Schemes

A (symmetric) association scheme consists of a set \(\{A_0, \ldots, A_d\} \) of symmetric 01-matrices with

- \(A_0 = I \)
- \(\sum_i A_i = J \) (the all-ones matrix)
- \(A_i A_j \) is a linear combination of \(A_0, \ldots, A_d \)

Rows and columns are indexed by base set \(X \) of size \(v \).
Bose-Mesner algebra

\[\mathcal{A} = \text{span}\{A_0, \ldots, A_d\} \]

is a commutative semisimple matrix algebra containing \(I \). It is also closed under entrywise multiplication \(\circ \) (also called “Schur mult.” or “Hadamard mult.”) and contains the identity \(J \) for this multiplication.

Second basis of minimal idempotents:

\[\mathcal{A} = \text{span}\{E_0, \ldots, E_d\} \]
Orthogonality relations

\[
A_i = \sum_{j=0}^{d} P_{ji} E_j \quad \quad \quad E_j = \frac{1}{v} \sum_{i=0}^{d} Q_{ij} A_i
\]

The change-of-basis matrices \(P \) and \(Q \) are called the “first and second eigenmatrices” of the scheme. A scaled version of \(P \) is called the “character table”:

\[
PQ = vl
\]

\[
MP = Q^\top K
\]

where \(M \) is a diagonal matrix of multiplicities \(m_j = \text{rank } E_j \) and \(K \) is a diagonal matrix of valencies \(v_i = \text{rowsum } A_i \).
A taste of duality

\[A_i A_j = \sum_{k=0}^{d} p_{ij}^k A_k \quad E_i \circ E_j = \frac{1}{v} \sum_{k=0}^{d} q_{ij}^k E_k \]

\[A_i \circ A_j = \delta_{ij} A_i \quad E_i E_j = \delta_{ij} E_i \]

\[A_i E_j = P_{ji} E_j \quad A_i \circ E_j = \frac{1}{v} Q_{ij} A_i \]

\[\sum_{i=0}^{d} A_i = J \quad \sum_{j=0}^{d} E_j = I \]

\[A_0 = I \quad E_0 = \frac{1}{v} J \]
Metric and Cometric Schemes

The scheme is *metric* (or *P-polynomial*) if there is an ordering of the A_i for which

- $p_{ij}^k = 0$ whenever $k > i + j$
- $p_{ij}^{i+j} > 0$ whenever $i + j \leq d$

The scheme is *cometric* (or *Q-polynomial*) if there is an ordering of the E_j for which

- $q_{ij}^k = 0$ whenever $k > i + j$
- $q_{ij}^{i+j} > 0$ whenever $i + j \leq d$
Distance-Regular Graphs

- For a graph G, how big can $\text{Aut}(G)$ be?
- Does combinatorial regularity imply the presence of a group?
- Includes graphs fundamental to coding theory: $H(n, q)$, $J(n, k)$, coset graphs of Golay codes, and more
- Massive effort under way to classify all metric-cometric schemes:
 - (Leonard, 1982) all parameters P_{ji} are given by evaluations of q-Racah polynomials and their limiting cases
 - (Terwilliger, et al., 1990-present) aim to classify all irreducible modules for the subconstituent algebra
 - (many authors) prove uniqueness of known families based on parameters alone, or together with local information
- Small diameter examples plentiful, not well-structured (strongly regular graphs, Hadamard matrices, projective planes, etc.)
Distance-Regular Graphs

We have a rough classification of distance-regular graphs into:

- primitive (all distance-i graphs are connected)
- bipartite (distance i disconnected for i even)
- antipodal (distance d – max. distance – graph disconn.)
- both bipartite and antipodal (e.g., cubes)
The Conjectures of Bannai and Ito

Conjecture (Bannai & Ito)

For each \(k > 2 \), there are only finitely distance-regular graphs of valency \(v_1 = k \).
The Conjectures of Bannai and Ito

Conjecture (Bannai & Ito)

For each \(k > 2 \), there are only finitely distance-regular graphs of valency \(v_1 = k \).

Let \(V_j = \text{colsp}E_j \) denote the \(j^{\text{th}} \) eigenspace of the cometric scheme.

Conjecture (unpublished)

For each \(m > 2 \), there are only finitely many cometric association schemes (up to isomorphism) with \(\dim V_1 = m \).
The Conjectures of Bannai and Ito

Conjecture (Bannai & Ito)

Every primitive cometric scheme of sufficiently large diameter d is metric as well.
The Conjectures of Bannai and Ito

Conjecture (Bannai & Ito)

The multiplicities m_0, m_1, \ldots, m_d of a cometric association scheme, given by $m_j = \dim V_j$ form a unimodal sequence:

$$m_0 < m_1 \leq m_2 \leq \cdots \leq m_r \geq m_{r+1} \geq \cdots \geq m_d.$$

Conjecture (D. Stanton)

For $j < d/2$,

$$m_j \leq m_{j+1}, \quad m_j \leq m_{d-j}.$$

Theorem (Caughman & Sagan, 2001)

If (X, A) is also “dual thin”, then Stanton’s conjecture holds.
Spherical Designs

Spherical t-Design: Finite subset $X \subset S^{m-1}$ for which

$$\frac{1}{|X|} \sum_{x \in X} f(x) = \frac{1}{|S^{m-1}|} \int f(x) dx$$

for all polynomials f in m variables of total degree at most t.

Example: The 196,560 shortest vectors of the Leech lattice form a spherical 11-design in \mathbb{R}^{24}.

Seymour and Zaslavsky (1984): Such finite sets X exist for all t in each dimension m.
Cometric schemes from spherical designs

Theorem (Delsarte, Goethals, Seidel (1977))

The number s of non-zero angles in a spherical t-design is at least $t/2$. If $t \geq 2s - 2$, then X carries a cometric association scheme.

Examples: 24-cell ($t = 5, s = 4$); E_6 ($t = 5, s = 4$); E_8 ($t = 7, s = 4$); Leech ($t = 11, s = 6$).
Cometric schemes from combinatorial designs

Defn: A *Delsarte t-design* in a cometric scheme (X, A) is any non-trivial subset Y of X whose characteristic vector χ_Y is orthogonal to V_1, \ldots, V_t.

Examples: orthogonal arrays ("dual codes"), block designs.

Theorem (Delsarte (1973))

If s non-zero relations occur among pairs of elements of Y, then $t \leq 2s$. If $t \geq 2s - 2$, then Y carries a cometric association scheme.
Cometric schemes from semilattices

Defn: The *dual width* w^* of $Y \subseteq X$ is the maximum j in the Q-polynomial ordering for which $E_j \chi_Y \neq 0$.

Theorem (Brouwer, Godsil, Koolen, WJM (2003))

For any Y in a d-class cometric scheme, $w^* \geq d - s$. If equality holds, then Y carries a cometric association scheme.
Group schemes

Every finite group G yields an association scheme via the center of the group algebra of its right regular representation $g \mapsto R_g$.

Conjugacy classes: $C_0 = \{e\}, C_1, \ldots, C_n$

$$A_i = \sum_{g \in C_i} R_g$$

Extended conjugacy classes: $C'_0 = \{e\}, C'_i = C_i \cup (C_i)^{-1}$

Symmetrized scheme:

$$A_i = \sum_{g \in C'_i} R_g$$
Cometric group schemes

Theorem (Kiyota and Suzuki (2000))

The symmetrized group scheme is cometric if and only if \(G \) is one of the following groups:

- \(\mathbb{Z}_n \)
- \(S_3 \)
- \(A_4 \)
- \(SL(2, 3) \)
- \(F_{21} = \mathbb{Z}_7 \rtimes \mathbb{Z}_3 \)
A Census

The following cometric association schemes are known:

- Q-polynomial distance-regular graphs (i.e., metric and cometric)
- duals of metric translation schemes
- bipartite doubles of Hermitian forms dual polar spaces $[^2 A_{2d-1}(r)]$ (Bannai & Ito)
- schemes arising from linked systems of symmetric designs (3-class, Q-antipodal) [Cameron & Seidel]
- extended Q-bipartite doubles of linked systems (4-class, Q-bipartite and Q-antipodal) [Muzychuk, Williford, WJM]
- real MUBS [Bannai & Bannai]
Census

census of cometric schemes, continued:

- the block schemes of the Witt designs 4-(11,5,1), 5-(24,8,1) and a 4-(47,11,8) design (Delsarte) (primitive 3-class schemes on 66, 759 and 4324 vertices respectively)

- the block schemes of the 5-(12,6,1) design and the 5-(24,12,48) design (Q-bipartite 4-class schemes on 132 and 2576 vertices, respectively)

- shortest vectors in lattices E_6, E_7, E_8 (4-class, Q-bipartite)

- the scheme on the vertices of the 24-cell (4-class, Q-bipartite, Q-antipodal, 24 vertices)
Census

- the scheme on the shortest vectors in the Leech lattice (6-class, Q-bipartite, 196560 vertices)
- 5 schemes arising from derived designs of this:

<table>
<thead>
<tr>
<th>Class</th>
<th>Vertices</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-class</td>
<td>2025</td>
<td>primitive</td>
</tr>
<tr>
<td>4-class</td>
<td>2816</td>
<td>Q-bipartite</td>
</tr>
<tr>
<td>4-class</td>
<td>4600</td>
<td>Q-bipartite</td>
</tr>
<tr>
<td>4-class</td>
<td>7128</td>
<td>primitive</td>
</tr>
<tr>
<td>5-class</td>
<td>47104</td>
<td>primitive</td>
</tr>
</tbody>
</table>

- Q-bipartite quotient of Leech lattice example (3-class, primitive)
- three more schemes arising from lattices (4-, 5-, 11-class, Q-bipartite)
- three schemes from dismantling dual schemes of metric translation schemes (4-, 5-, and 6-class, all Q-antipodal)
An association scheme is *imprimitive* if there is a subset $A_{i_0}, A_{i_1}, \ldots, A_{i_e}$ of the associate matrices A_i satisfying

$$\sum_h A_{i_h} = I_w \otimes J_r$$

for some $1 < w, r < v$.

Any imprimitive distance-regular graph is either bipartite or antipodal or both.
Imprimitivity

Theorem (Suzuki, 1998)

Any imprimitive cometric association scheme is either Q-bipartite or Q-antipodal or both, with possible exceptions if the number of classes is four or six.

Theorem (Cerzo and Suzuki, 2006)

The exception with $d = 4$ does not occur.
Q-bipartite Schemes

Today, let me simply say that these correspond to very symmetric sets of lines through the origin in \mathbb{R}^m.
Q-antipodal Structure

- Gardiner, 1970s: a P-antipodal scheme has $r \leq k$
Q-antipodal Structure

- **Gardiner, 1970s**: a P-antipodal scheme has $r \leq k$
- **Theorem**: A Q-antipodal scheme with d odd has $w \leq m_1$ (d even case not complete)
Q-antipodal Structure

- **Gardiner, 1970s:** a \(P \)-antipodal scheme has \(r \leq k \)
- **Theorem:** A \(Q \)-antipodal scheme with \(d \) odd has \(w \leq m_1 \) (\(d \) even case not complete)
- With natural ordering, \(Q_{0d} = Q_{2d} = \cdots = m_d \) and \(Q_{1d} = Q_{3d} = \cdots = -1 \)
- \(p_{ij}^k = 0 \) unless \(i + j + k \) is even or \(ijk \) odd.
Theorem (Muzychuk, Williford, WJM (2007))

Every Q-antipodal scheme is dismantlable:
the subscheme induced on any non-trivial collection of w' Q-antipodal classes is cometric for $w' \geq 1$ and Q-antipodal with d classes for $w' > 1$.
Dismantlability

Y_1

Y_2

Y_3

Y_4
Dismantlability

\[Y_4 \quad Y_2 \quad Y_3 \]
Trivial cases

- halved graph of a bipartite Q-polynomial distance-regular graph
- linked systems of symmetric designs (by defn.)

Corollary (van Dam)

Every Q-antipodal 3-class cometric association scheme arises from a linked system of symmetric designs.
A new example via dismantling

Coset graph of the shortened ternary Golay code:

- intersection array \(\{20, 18, 4, 1; 1, 2, 18, 20\} \)
A new example via dismantling

Coset graph of the shortened ternary Golay code:

- intersection array \(\{20, 18, 4, 1; 1, 2, 18, 20\} \)
- antipodal distance-regular graph belonging to a translation scheme
A new example via dismantling

Coset graph of the shortened ternary Golay code:
- intersection array \{20, 18, 4, 1; 1, 2, 18, 20\}
- antipodal distance-regular graph belonging to a translation scheme
- dual association scheme is Q-antipodal on $\nu = 243$ vertices with $w = 3$ Q-antipodal classes
A new example via dismantling

Coset graph of the shortened ternary Golay code:

- intersection array \{20, 18, 4, 1; 1, 2, 18, 20\}
- antipodal distance-regular graph belonging to a translation scheme
- dual association scheme is Q-antipodal on $v = 243$ vertices with $w = 3$ Q-antipodal classes
- Remove one of these to obtain a Q-antipodal scheme on 162 vertices having $w = 2$ Q-antipodal classes which is not metric
A new example via dismantling

Coset graph of the shortened ternary Golay code:

- intersection array \{20, 18, 4, 1; 1, 2, 18, 20\}
- antipodal distance-regular graph belonging to a translation scheme
- dual association scheme is Q-antipodal on $v = 243$ vertices with $w = 3$ Q-antipodal classes
- Remove one of these to obtain a Q-antipodal scheme on 162 vertices having $w = 2$ Q-antipodal classes which is not metric
- parameters

\[d = 4, \ n = 162, \ i^*(X, A) = \{20, 18, 3, 1; 1, 3, 18, 20\}\]

formally dual to those of an unknown diameter four bipartite distance-regular graph.
Dismantling the dual of a coset graph

- Two more distance-regular coset graphs yield Q-antipodal schemes with five and six classes.
Dismantling the dual of a coset graph

- Two more distance-regular coset graphs yield Q-antipodal schemes with five and six classes.
- Parameters

 \[\begin{array}{c}
 \begin{aligned}
 d &= 5, \quad v = 486, \\
 \iota^* (X, A) &= \{22, 20, \frac{27}{2}, 2, 1; 1, 2, \frac{27}{2}, 20, 22\}, \quad w = 2
 \end{aligned}
 \\
 d &= 6, \quad v = 1536, \\
 \iota^* (X, A) &= \{21, 20, 16, 8, 2, 1; 1, 2, 4, 16, 20, 21\}, \quad w = 3.
 \end{array} \]

This last scheme is formally dual to a distance-regular graph which was proven not to exist by Brouwer, Cohen and Neumaier.
Dismantling the dual of a coset graph

- Two more distance-regular coset graphs yield Q-antipodal schemes with five and six classes.
- Parameters

 $d = 5, \; v = 486,$

 $i^*(X, A) = \{22, 20, \frac{27}{2}, 2, 1; 1, 2, \frac{27}{2}, 20, 22\}, \; w = 2$

 $d = 6, \; v = 1536,$

 $i^*(X, A) = \{21, 20, 16, 8, 2, 1; 1, 2, 4, 16, 20, 21\}, \; w = 3.$

- This last scheme is formally dual to a distance-regular graph which was proven not to exist by Brouwer, Cohen and Neumaier.
Building Up?

- **Theorem (M,W,M):** The first multiplicity does not depend on w
- **Question:** Which Q-polynomial bipartite drg’s can be extended to $w > 2$?
- Works for 2-cube, 3-cube, 4-cube
An elementary ring homomorphism

Let \((X, A)\) be a cometric association scheme on \(v\) vertices with first primitive idempotent \(E_1\).
Let \(\gamma : \mathbb{R}[Z_1, \ldots, Z_v] \to \mathbb{R}^X\) via

\[
Z_a \mapsto \bar{a}
\]

(the \(a\)-column of \(E1\)) and extending linearly and via the Schur product \(\circ\).
E.g., \(Z_a Z_b^2 - 3Z_a \mapsto (\bar{a} \circ \bar{b} \circ \bar{b}) - 3\bar{a}\)

We are interested in \(I = \ker \gamma\).
The ideal of a cometric scheme

Easy to prove: I contains exactly those polynomials in v variables which vanish on each column of E_1.
Simpler viewpoint for computation

Our ideal can be generated by $\nu - m_1$ linearly independent polynomials all of degree one, together with higher degree polynomials in m_1 variables representing functions on the eigenspace V_1.
Example

For the m-cube, V_1 has dimension m and our ideal is generated by

$$ (Y_i + Y_j)(Y_i - Y_j) $$

$$ \sum_i Y_i^2 - 1 $$

and some linear polynomials.
Strange example

For the n-gon, V_1 has dimension 2 and our ideal is generated by

$$X^2 + Y^2 - 1$$

and

$$(X - 1)(X - \eta_1) \cdots (X - \eta_{\lfloor n/2 \rfloor})$$

where $\eta_k = \cos(2\pi k/n)$.
Example

For the E_8 association scheme (240 vertices in \mathbb{R}^8), our ideal is generated by polynomials of degree two and four, namely

$$Z_i Z_j (Z_i^2 - Z_j^2)$$

($i \neq j$) and

$$Z_h Z_i Z_j Z_k - Z_{h'} Z_{i'} Z_{j'} Z_{k'}$$

for any bipartition of $\{1, \ldots, 8\}$ into two sets of size four, together with

$$Z_1^2 + \cdots + Z_8^2 - 1.$$
A Conjecture?

Conjecture

For each $m > 2$, there is a constant $K(m)$, independent of the choice of cometric association scheme, such that whenever $\dim V_1 = m$, the ideal I is generated by a set of polynomials all of total degree at most $K(m)$.

William J. Martin
Cometric Association Schemes
Equivalence

This conjecture is equivalent to the dual of the Bannai-Ito Conjecture.

Theorem

The following are equivalent:

- For each $m > 2$, there are only finitely many cometric association schemes (up to isomorphism) with $\dim V_1 = m$;
- For each $m > 2$, there is a constant $K(m)$, independent of the choice of cometric association scheme, such that whenever $\dim V_1 = m$, the ideal I is generated by a set of polynomials all of total degree at most $K(m)$.
Goal for Last Part

In the last part of the talk, I will outline a proof of the dual of the Bannai-Ito Conjecture. This is joint work with Jason Williford.

Theorem (Williford & WJM): For any fixed $m_1 > 2$, there are only finitely many cometric association schemes with first multiplicity m_1.
Splitting Fields

The *splitting field* of an association scheme is the smallest extension of the rationals containing all of the entries of the first eigenmatrix \(P \).

Our first theorem concerns actions of automorphisms of the splitting field on the \(E_i \), and is true for any association scheme.
Splitting Fields

Theorem
Let \((X, \mathcal{R})\) be an association scheme and let \(\mathcal{A}\) be its Bose-Mesner algebra. Let \(F\) be the splitting field of this scheme and \(G = \text{Gal}(F/Q)\). Let \(G\) act on the matrices of the Bose-Mesner algebra \(\mathcal{A}\) entrywise. Then this induces a faithful action of \(G\) on the primitive idempotents \(E_0, \ldots, E_d\).
The Splitting Field of a Cometric Scheme

The following result has been obtained independently by Cerzo and Suzuki (2006).

Theorem

The splitting field of any cometric association scheme with \(m_1 > 2 \) is at most a degree two extension of the rationals.
Proof.

Let \((X, \mathcal{R})\) be a cometric association scheme of diameter \(d\), and let \(E_0, E_1, \ldots, E_d\) be a \(Q\)-polynomial ordering of the primitive idempotents. Let \(F\) be the splitting field of the scheme, generated by the entries \(Q_{ij}\) of the matrix \(Q\), and suppose \([F : \mathbb{Q}] = n\).

Note that if \(\sigma\) is in \(G\), then \(E_0^\sigma, E_1^\sigma, \ldots, E_d^\sigma\) is also a \(Q\)-polynomial ordering. Since \(|G| = n\), and the action of \(G\) is faithful on the \(E_j\), there must then be at least \(n\) different \(Q\)-polynomial orderings of the \(E_j\). By a result of Suzuki (1998) there can be at most two \(Q\)-polynomial orderings of the \(E_j\), so \(|G| \leq 2\), therefore, \([F : \mathbb{Q}] \leq 2\). \(\square\)
Spherical Codes

For a subset $A \subset [-1, 1)$ of the possible inner products among unit vectors, a *spherical A-code* in \mathbb{R}^m is a subset Y of the unit sphere S^{m-1} having the property that $x \cdot y \in A$ for any distinct $x, y \in Y$ where \cdot denotes the ordinary dot product.
Bounds on Spherical Codes

If A is bounded away from 1 — the case of interest is $A = [-1, \eta]$ for some fixed $\eta < 1$ — then Y must be finite. We can obtain an upper bound

$$U(m, \eta),$$

on the size of such a set Y just using a sphere-packing argument.
Kissing Numbers

An interesting special case is that of spherical A-codes where

$$A = [-1, \frac{1}{2}].$$

The optimal size of such a spherical code in \mathbb{R}^m is called the kissing number τ_m.

Kabatianski and Levenshtein (1978):

$$\tau_m \leq 2^{0.401m(1+o(m))}.$$
Repeat Today’s Result

Theorem

For any fixed $m > 2$, there are only finitely many cometric association schemes (X, \mathcal{R}) with some Q-polynomial ordering E_0, E_1, \ldots, E_d of primitive idempotents satisfying $\text{rank } E_1 = m$. \qed
Overview of the Proof

The proof of this theorem is broken into three steps.

- geometry of the first eigenspace $\text{colsp}E_1$: focus on the relation R_1 selected so that $m > Q_{1j} > Q_{ij}$ for all $i > 1$. We prove that this valency v_1 is bounded above by some function of m.
- there are only finitely many possible eigenvalues for A_1 in such an association scheme with $\text{rank} E_1 = m$.
- derive a contradiction using these tools.
Valency Lemma

Lemma

Let \((X, R)\) be an association scheme and let \(E_j\) be a primitive idempotent with rank \(m_j\). Suppose \(m_j > Q_{1j} \geq Q_{ij}\) for all \(i > 1\). Then \(v_1 \leq K\) for some \(K\) depending only on \(m_j\).
Proving the Valency Lemma

Proof: Fix $a \in X$ and consider the configuration

$$Y' = \{ \bar{b} : (a, b) \in R_1 \}$$

where \bar{b} denotes the b^{th} column of E_j. In \mathbb{R}^{mj}, the Euclidean distance from \bar{a} is

$$d(\bar{a}, \bar{b}) = d_1 := \sqrt{2(m_j - Q_{1j})/\nu}$$

for each such b.
Proving the Valency Lemma

Proof: Fix $a \in X$ and consider the configuration

$$Y' = \{ \bar{b} : (a, b) \in R_1 \}$$

where \bar{b} denotes the b^{th} column of E_j. In \mathbb{R}^{m_j}, the Euclidean distance from \bar{a} is

$$d(\bar{a}, \bar{b}) = d_1 := \sqrt{2(m_j - Q_{1j})/v}$$

for each such b.

Since this is the smallest distance between any two distinct columns of E_j, we have $d(\bar{b}, \bar{c}) \geq d_1$ for any distinct $b, c \in R_1(a)$. Now (after a translation and re-normalization) Y' forms a spherical code in \mathbb{R}^{m_j-1} with center $\frac{Q_{1j}}{m_j} \bar{a}$ since each vector in Y' lies in the hyperplane $\{ \bar{x} : \bar{x} \cdot \bar{a} = Q_{1j}/v \}$ inside $\text{colsp} E_j$.
Proving the Valency Lemma

We next show that the minimum angle formed by distinct vectors in this spherical code is at least 60°.
We next show that the minimum angle formed by distinct vectors in this spherical code is at least 60°. Denote the point \bar{a} by A and the center of the sphere $\frac{Q_{1j}}{m_j} \bar{a}$ by O.
Proving the Valency Lemma

We next show that the minimum angle formed by distinct vectors in this spherical code is at least 60°. Denote the point \overline{a} by A and the center of the sphere $\frac{Q_{1j}}{m_j} \overline{a}$ by O. Now if B and C are distinct points from Y', then $\angle BAC \geq 60^\circ$ since $d(B, C) \geq d(A, B) = d(A, C)$.
Proving the Valency Lemma

We next show that the minimum angle formed by distinct vectors in this spherical code is at least 60°. Denote the point \bar{a} by A and the center of the sphere $\frac{Q_1}{m_j}\bar{a}$ by O. Now if B and C are distinct points from Y', then $\angle BAC \geq 60^\circ$ since $d(B, C) \geq d(A, B) = d(A, C)$. So, since $\angle AOB = \angle AOC = 90^\circ$, we must have $\angle BOC > 60^\circ$.
At least 60 degrees
Proving the Valency Lemma

Now we have enough to show that v_1 is bounded by a function of m_1.
Now we have enough to show that v_1 is bounded by a function of m_1.

Our hypothesis that $m_j > Q_{1j} \geq Q_{ij}$ for all $j > 1$ guarantees that the columns of E_j are all distinct. So we have $v_1 = |Y'|$. But, from the above observation, Y' can be scaled to a spherical $[-1, \frac{1}{2}]$-code in \mathbb{R}^{m_j-1}.
Now we have enough to show that \(v_1 \) is bounded by a function of \(m_1 \).

Our hypothesis that \(m_j > Q_{1j} \geq Q_{ij} \) for all \(j > 1 \) guarantees that the columns of \(E_j \) are all distinct. So we have \(v_1 = |Y'| \). But, from the above observation, \(Y' \) can be scaled to a spherical \([-1, \frac{1}{2}]\)-code in \(\mathbb{R}^{m_j-1} \).

Thus the size of \(Y' \) is bounded by the kissing number \(\tau_{m_j-1} \) in dimension \(m_j - 1 \). \(\square \)
Bounding the Number of Algebraic Integers

Theorem
Let $K > 0$ and S the set of all monic polynomials with degree 2 over the integers, both of whose roots lie in $[-K, K]$. Then S is finite.
Counting Polynomials

Proof.
Let \(f \in S \) have degree 2, and write \(f = x^2 + f_1 x + f_0 \).
Let \(s \) be the maximum absolute value of the roots of \(f \).
Then the coefficients satisfy

\[-2K \leq -2s \leq f_1 \leq 2s \leq 2K\]

and

\[-K^2 \leq -s^2 \leq f_0 \leq s^2 \leq K^2.\]

Since these bounds depend only on \(K \), there are only finitely many possible values for the integer coefficients \(f_0 \) and \(f_1 \), so the set of polynomials \(S \) must be finite. □
Back to the Main Proof

Now we are ready to complete our proof.
Now we are ready to complete our proof.
Suppose, by way of contradiction, that for some fixed $m > 2$, there are infinitely many non-isomorphic cometric association schemes with $\text{rank } E_1 = m$.
Now we are ready to complete our proof. Suppose, by way of contradiction, that for some fixed $m > 2$, there are infinitely many non-isomorphic cometric association schemes with rank $E_1 = m$. We know that, for each of these schemes, all P_{1i} have minimal polynomials over \mathbb{Q} of degree one or two.
Back to the Main Proof

Now we are ready to complete our proof. Suppose, by way of contradiction, that for some fixed $m > 2$, there are infinitely many non-isomorphic cometric association schemes with $\text{rank } E_1 = m$. We know that, for each of these schemes, all P_{1i} have minimal polynomials over \mathbb{Q} of degree one or two. Let \mathcal{F} denote this family of association schemes and henceforth for each scheme in this family, order the relations R_0, R_1, \ldots, R_d so that

$$m = Q_{01} > Q_{11} > Q_{21} > \cdots > Q_{d1}.$$
Proof of Main Result, Cont’d

Let K be the bound of the Valency Lemma (K depends only on m).
Proof of Main Result, Cont’d

Let \(K \) be the bound of the Valency Lemma (\(K \) depends only on \(m \)). Let \(\mathcal{B} \) denote the ring of algebraic integers and, for \(b \in \mathcal{B} \), write \(m_b(t) \) for the minimal polynomial of \(b \) over the rationals.
Proof of Main Result, Cont’d

Let K be the bound of the Valency Lemma (K depends only on m). Let \mathcal{B} denote the ring of algebraic integers and, for $b \in \mathcal{B}$, write $m_b(t)$ for the minimal polynomial of b over the rationals. Now consider the set

$$S = \left\{ b \in \mathcal{B} \mid \deg m_b = 2, \quad -K \leq \xi \leq K \quad \text{whenever} \quad m_b(\xi) = 0 \right\}$$

and let

$$r = \max \left(\frac{K-1}{K}, \max_{s \in S} \frac{s}{|s|} \right).$$
Proof of Main Result, Cont’d

Let K be the bound of the Valency Lemma (K depends only on m). Let \mathcal{B} denote the ring of algebraic integers and, for $b \in \mathcal{B}$, write $m_b(t)$ for the minimal polynomial of b over the rationals. Now consider the set

$$S = \left\{ b \in \mathcal{B} \mid \deg m_b = 2, \quad -K \leq \xi \leq K \quad \text{whenever} \quad m_b(\xi) = 0 \right\}$$

and let

$$r = \max \left(\frac{K - 1}{K}, \max_{s \in S} \frac{s}{\lceil s \rceil} \right).$$

Then r is well-defined and $r < 1$.
Proof of Main Result, Cont’d

Let K be the bound of the Valency Lemma (K depends only on m). Let \mathcal{B} denote the ring of algebraic integers and, for $b \in \mathcal{B}$, write $m_b(t)$ for the minimal polynomial of b over the rationals. Now consider the set

$$S = \left\{ b \in \mathcal{B} \mid \deg m_b = 2, \ -K \leq \xi \leq K \text{ whenever } m_b(\xi) = 0 \right\}$$

and let

$$r = \max \left(\frac{K - 1}{K}, \max_{s \in S} \frac{s}{\lceil s \rceil} \right).$$

Then r is well-defined and $r < 1$. Choose δ so that $1 > 1 - \delta > r$.
Let $M = U(m, 1 - \delta)$ be the bound on spherical codes from our earlier step.
Let $M = U(m, 1 - \delta)$ be the bound on spherical codes from our earlier step. Since our family \mathcal{F} is assumed to be infinite, we can find a member of \mathcal{F} with more than M vertices. For this association scheme, we must have

$$m_1 > Q_{11} > (1 - \delta)m_1.$$
Let $M = U(m, 1 - \delta)$ be the bound on spherical codes from our earlier step. Since our family \mathcal{F} is assumed to be infinite, we can find a member of \mathcal{F} with more than M vertices. For this association scheme, we must have

$$m_1 > Q_{11} > (1 - \delta)m_1.$$

Since $P_{11} = v_1 Q_{11}/m_1$ (orthogonality relations), this gives $v_1 > P_{11} > (1 - \delta)v_1$ or $1 > \frac{P_{11}}{v_1} > r$.
Let $M = U(m, 1 - \delta)$ be the bound on spherical codes from our earlier step. Since our family \mathcal{F} is assumed to be infinite, we can find a member of \mathcal{F} with more than M vertices. For this association scheme, we must have

$$m_1 > Q_{11} > (1 - \delta)m_1.$$

Since $P_{11} = v_1 Q_{11}/m_1$ (orthogonality relations), this gives $v_1 > P_{11} > (1 - \delta)v_1$ or $1 > \frac{P_{11}}{v_1} > r$.

But this is impossible since either $P_{11} \in \mathbb{Z}$ (in which case $\frac{P_{11}}{v_1} \leq \frac{K-1}{K} \leq r$) or P_{11} belongs to the set S: it is an algebraic integer in some extension $\mathbb{Q}[\zeta]$ of degree two and any conjugate ξ of P_{11} is an eigenvalue of A_1 so satisfies

$$-K \leq -v_1 < \xi < v_1 \leq K.$$

So we have arrived at the desired contradiction. □
Open Questions

- Find a good bound on the number of schemes with fixed m_1;
- Find the list for $m_1 = 3$ (I think Suzuki has done this) and $m_1 = 4$;
- Generate feasible parameter sets!
Open Questions

- Find a good bound on the number of schemes with fixed m_1;
- Find the list for $m_1 = 3$ (I think Suzuki has done this) and $m_1 = 4$;
- Generate feasible parameter sets!
- Determine which symmetric designs can be linked to give Q-antipodal schemes with $w > 2$;
- Prove $w \leq m_1$ when d is even;
- Determine when a set of lines through the origin determines a Q-bipartite scheme;
Open Questions

- Find a good bound on the number of schemes with fixed m_1;
- Find the list for $m_1 = 3$ (I think Suzuki has done this) and $m_1 = 4$;
- Generate feasible parameter sets!
- Determine which symmetric designs can be linked to give Q-antipodal schemes with $w > 2$;
- Prove $w \leq m_1$ when d is even;
- Determine when a set of lines through the origin determines a Q-bipartite scheme;
- approach old solved and unsolved questions on tight designs using these new tools.
Thank You!
A curious property

There exists a function (a bilinear map)

\[\star : \mathbb{R}[t] \times \mathbb{R}[t] \to \mathbb{R}[t] \]

for which

\[\sum_{z \in \mathbb{X}} f(\langle x, z \rangle) g(\langle z, y \rangle) = (f \star g)(\langle x, y \rangle) \]

for all polynomials \(f \) and \(g \) and for all \(x, y \in \mathbb{X} \).
Multiplication table

<table>
<thead>
<tr>
<th>*</th>
<th>1</th>
<th>t</th>
<th>t^2</th>
<th>t^3</th>
<th>t^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>196560</td>
<td>8190t</td>
<td>630t^2 + 315</td>
<td>$\frac{135}{2}t^3 + \frac{405}{4}t$</td>
<td>$9t^4 + 27t^2 + \frac{27}{8}$</td>
</tr>
<tr>
<td>t</td>
<td>8190</td>
<td>630t^2 + 315</td>
<td>$\frac{135}{2}t^3 + \frac{405}{4}t$</td>
<td>$9t^4 + 27t^2 + \frac{27}{8}$</td>
<td>$\frac{135}{32}t^4 + \frac{405}{64}t^2 + \frac{135}{256}$</td>
</tr>
<tr>
<td>t^2</td>
<td>945t</td>
<td>135t^2 + $\frac{135}{4}$</td>
<td>$\frac{45}{2}t^3 + \frac{135}{8}t$</td>
<td>$9t^4 + 27t^2 + \frac{27}{8}$</td>
<td>$\frac{135}{32}t^4 + \frac{405}{64}t^2 + \frac{135}{256}$</td>
</tr>
<tr>
<td>t^3</td>
<td>945</td>
<td>$\frac{675}{4}t$</td>
<td>$\frac{135}{4}t^2 + \frac{45}{8}$</td>
<td>$\frac{45}{2}t^3 + \frac{135}{8}t$</td>
<td>$9t^4 + 27t^2 + \frac{27}{8}$</td>
</tr>
<tr>
<td>t^4</td>
<td>$\frac{675}{4}t$</td>
<td>$\frac{135}{4}t^2 + \frac{45}{8}$</td>
<td>$\frac{135}{2}t^3 + \frac{405}{4}t$</td>
<td>$9t^4 + 27t^2 + \frac{27}{8}$</td>
<td>$\frac{135}{32}t^4 + \frac{405}{64}t^2 + \frac{135}{256}$</td>
</tr>
<tr>
<td>t^5</td>
<td>$\frac{675}{4}t$</td>
<td>$\frac{135}{4}t^2 + \frac{45}{8}$</td>
<td>$\frac{135}{2}t^3 + \frac{405}{4}t$</td>
<td>$9t^4 + 27t^2 + \frac{27}{8}$</td>
<td>$\frac{135}{32}t^4 + \frac{405}{64}t^2 + \frac{135}{256}$</td>
</tr>
<tr>
<td>t^6</td>
<td>$\frac{675}{4}$</td>
<td>$\frac{135}{4}t^2 + \frac{45}{8}$</td>
<td>$\frac{135}{2}t^3 + \frac{405}{4}t$</td>
<td>$9t^4 + 27t^2 + \frac{27}{8}$</td>
<td>$\frac{135}{32}t^4 + \frac{405}{64}t^2 + \frac{135}{256}$</td>
</tr>
</tbody>
</table>
Multiplication table, cont’d

\[t^5 \star t^5 = \frac{45}{32} t^5 + \frac{225}{32} t^3 + \frac{675}{256} t \]

\[t^6 \star t^6 = \frac{45}{32} t^6 + \frac{675}{512} t^4 + \frac{1485}{1024} t^2 + \frac{315}{4096} \]
Non-standard definition

A finite set X of points on the unit sphere in \mathbb{R}^m is an *association scheme* if there exists a function

$$\star : \mathbb{R}[t] \times \mathbb{R}[t] \to \mathbb{R}[t]$$

for which

$$\sum_{z \in X} f(\langle x, z \rangle) g(\langle z, y \rangle) = (f \star g)(\langle x, y \rangle)$$

for all polynomials f and g and for all $x, y \in X$.
Suppose the finite set X of points on the unit sphere in \mathbb{R}^m is an association scheme according to the above definition. The scheme is said to be *cometric* (or “Q-polynomial”) if, for all polynomials f and g,

$$\deg f \star g \leq \deg f, \quad \deg g$$
Example

The m-cube is a cometric association scheme in \mathbb{R}^m. For $m = 3$, we have

\[
\begin{align*}
1 \star 1 &= 8 \\
t \star t &= \frac{8}{3} t \\
t^2 \star 1 &= \frac{8}{3} \\
t^2 \star t^2 &= \frac{16}{9} t^2 + \frac{8}{27} \\
t^3 \star t &= \frac{56}{27} t \\
t^3 \star t^3 &= \frac{16}{9} t^3 + \frac{56}{243} t
\end{align*}
\]