Hey! You Can’t Do That With My Code!

William J. Martin

Department of Mathematical Sciences
and
Department of Computer Science
Worcester Polytechnic Institute

CIMPA-UNESCO-PHILIPPINES Research Summer School
UP Diliman, July 27, 2009
Outline

(T, M, S)-Nets

Resilient Functions

Fuzzy Extractors
First: The Omissions

- Perhaps the most exciting developments in algebraic coding theory since 1990 are...
First: The Omissions

- Perhaps the most exciting developments in algebraic coding theory since 1990 are
- the theory of \textit{quantum error-correcting codes}
First: The Omissions

► Perhaps the most exciting developments in algebraic coding theory since 1990 are
► the theory of **quantum error-correcting codes**
► The **PCP Theorem** in computational complexity theory: e.g. \(NP = PCP_{1-\epsilon, \frac{1}{2}} [O(\log n), 3] \) (Håstad, 2001)
Part I: \((T, M, S)\)-Nets

[Comic strip with Calvin and Hobbes characters discussing directions.]
Using Codes to Estimate Integrals

If orthogonal arrays can be used to approximate Hamming space, can they also be used to approximate other spaces?
Key Results

- **1967**: Sobol’ sequences (I. Sobol’) [also Halton/Faure/Hammersley sequences]
Key Results

- **1967**: Sobol’ sequences (I. Sobol’) [also Halton/Faure/Hammersley sequences]
- **1987**: \((T, M, S)\)-nets (Niederreiter)
Key Results

- **1967**: Sobol’ sequences (I. Sobol’) [also Halton/Faure/Hammersley sequences]
- **1987**: \((T, M, S)\)-nets (Niederreiter)
- **1996**: generalized orthogonal arrays (Lawrence)
Key Results

- **1967**: Sobol’ sequences (I. Sobol’) [also Halton/Faure/Hammersley sequences]
- **1987**: (T, M, S)-nets (Niederreiter)
- **1996**: generalized orthogonal arrays (Lawrence)
- **1996**: ordered orthogonal arrays (Mullen/Schmid)

William J. Martin
Abusing Codes
Key Results

- **1967**: Sobol’ sequences (I. Sobol’) [also Halton/Faure/Hammersley sequences]
- **1987**: \((T, M, S)\)-nets (Niederreiter)
- **1996**: generalized orthogonal arrays (Lawrence)
- **1996**: ordered orthogonal arrays (Mullen/Schmid)
- **1996**: Constructions from algebraic curves (Niederreiter/Xing)
Key Results

- **1967**: Sobol’ sequences (I. Sobol’) [also Halton/Faure/Hammersley sequences]
- **1987**: (T, M, S)-nets (Niederreiter)
- **1996**: generalized orthogonal arrays (Lawrence)
- **1996**: ordered orthogonal arrays (Mullen/Schmid)
- **1996**: Constructions from algebraic curves (Niederreiter/Xing)
- **1999**: MacWilliams identities, LP bounds, association scheme (WJM/Stinson)
Key Results

▶ **1967**: Sobol’ sequences (I. Sobol’) [also Halton/Faure/Hammersley sequences]
▶ **1987**: \((T, M, S)\)-nets (Niederreiter)
▶ **1996**: generalized orthogonal arrays (Lawrence)
▶ **1996**: ordered orthogonal arrays (Mullen/Schmid)
▶ **1996**: Constructions from algebraic curves (Niederreiter/Xing)
▶ **1999**: MacWilliams identities, LP bounds, association scheme (WJM/Stinson)
▶ **late 90s+**: Many new constructions (Adams/Edel/Bierbrauer/et al.)
Key Results

- **1967**: Sobol’ sequences (I. Sobol’) [also Halton/Faure/Hammersley sequences]
- **1987**: \((T, M, S)\)-nets (Niederreiter)
- **1996**: generalized orthogonal arrays (Lawrence)
- **1996**: ordered orthogonal arrays (Mullen/Schmid)
- **1996**: Constructions from algebraic curves (Niederreiter/Xing)
- **1999**: MacWilliams identities, LP bounds, association scheme (WJM/Stinson)
- **late 90s+**: Many new constructions (Adams/Edel/Bierbrauer/et al.)
- **2004+**: Improved bounds (Schmid/Schürer/Bierbrauer/Barg/Purkayastha/Trinker/Visentin)
What is a \((T, M, S)\)-Net?

A \((T, M, S)\)-net in base \(q\)

Harald Niederrieter
What is a (T, M, S)-Net?

Harald Niederrieter

A (T, M, S)-net in base q is a set \mathcal{N} of q^M points in the half-open S-dimensional Euclidean cube $[0, 1)^S$
What is a (T, M, S)-Net?

A (T, M, S)-net in base q is a set \mathcal{N} of q^M points in the half-open S-dimensional Euclidean cube $[0, 1)^S$ with the property that every elementary interval

$$\left[\frac{a_1}{q^{d_1}}, \frac{a_1 + 1}{q^{d_1}} \right) \times \left[\frac{a_2}{q^{d_2}}, \frac{a_2 + 1}{q^{d_2}} \right) \times \cdots \times \left[\frac{a_S}{q^{d_S}}, \frac{a_S + 1}{q^{d_S}} \right)$$

of volume q^{T-M} contains exactly q^T points from \mathcal{N}.

Harald Niederrieter

William J. Martin Abusing Codes
What is a (T, M, S)-Net?

Harald Niederrieter

A (T, M, S)-net in base q is a set \mathcal{N} of q^M points in the half-open S-dimensional Euclidean cube $[0, 1)^S$ with the property that every elementary interval

$$\left[\frac{a_1}{q^{d_1}}, \frac{a_1 + 1}{q^{d_1}} \right) \times \left[\frac{a_2}{q^{d_2}}, \frac{a_2 + 1}{q^{d_2}} \right) \times \cdots \times \left[\frac{a_S}{q^{d_S}}, \frac{a_S + 1}{q^{d_S}} \right)$$

of volume q^{T-M} (i.e., with $d_1 + d_2 + \cdots + d_S = M - T$)
What is a \((T, M, S)\)-Net?

A \((T, M, S)\)-net *in base* \(q\) is a set \(\mathcal{N}\) of \(q^M\) points in the half-open \(S\)-dimensional Euclidean cube \([0, 1)^S\) with the property that every elementary interval

\[
\left[\frac{a_1}{q^{d_1}}, \frac{a_1 + 1}{q^{d_1}}\right) \times \left[\frac{a_2}{q^{d_2}}, \frac{a_2 + 1}{q^{d_2}}\right) \times \cdots \times \left[\frac{a_S}{q^{d_S}}, \frac{a_S + 1}{q^{d_S}}\right)
\]

of volume \(q^{T-M}\) (i.e., with \(d_1 + d_2 + \cdots + d_S = M - T\)) contains exactly \(q^T\) points from \(\mathcal{N}\).
Simple Example of a \((T, M, S)\)-Net

- binary code with minimum distance three
- four points in \([0, 1)^2\)
Simple Example of a \((T, M, S)\)-Net

- binary code with minimum distance three
- \(C = \{000000, 111001, 001110, 110111\}\)

- four points in \([0, 1)^2\)
- \(\mathcal{N} = \{(0, 0), (7/8, 1/8), (1/8, 3/4), (3/4, 7/8)\}\)
Simple Example of a \((T, M, S)\)-Net

- binary code with minimum distance three
- \(C = \{000000, 111001, 001110, 110111\}\)
- partition into two groups of three coords, insert decimal points

- four points in \([0, 1)^2\)
- \(\mathcal{N} = \{(0, 0), (7/8, 1/8), (1/8, 3/4), (3/4, 7/8)\}\)
Simple Example of a \((T, M, S)\)-Net

- **binary code with minimum distance three**
- \(C = \{000000, 111001, 001110, 110111\}\)
- partition into two groups of three coords, insert decimal points
- \(\mathcal{N} = \{(0, 0), (7/8, 1/8), (1/8, 3/4), (3/4, 7/8)\}\)
Simple Example of a \((T, M, S)\)-Net

- Binary code with minimum distance three
- \(C = \{000000, 111001, 001110, 110111\}\)
- Partition into two groups of three coords, insert decimal points

 | | |
 | 0.0 0.0 0.0 | 0.0 0.0 0.0 |
 | 0.1 0.1 0.1 | 0.0 0.0 0.1 |
 | 0.0 0.0 0.1 | 0.1 0.1 0.0 |
 | 0.1 0.1 0.1 | 0.1 0.1 0.1 |

- Four points in \([0, 1)^2\)
- \(\mathcal{N} = \{(0,0), (7/8,1/8), (1/8,3/4), (3/4,7/8)\}\)
Orthogonal Array Property

- We consider an $m \times n$ array A over \mathbb{F}_q
Orthogonal Array Property

- We consider an \(m \times n \) array \(A \) over \(\mathbb{F}_q \)
- “OA property”: for a subset \(T \) of the columns, does the projection of \(A \) onto these columns contain every \(|T|\)-tuple over \(\mathbb{F}_q \) equally often?
Orthogonal Array Property

- We consider an $m \times n$ array A over \mathbb{F}_q.
- "OA property": for a subset T of the columns, does the projection of A onto these columns contain every $|T|$-tuple over \mathbb{F}_q equally often?
- **Orthogonal array of strength t**: A has the OA property with respect to any set T of t or fewer columns.
Orthogonal Array Property

- We consider an \(m \times n \) array \(A \) over \(\mathbb{F}_q \)
- “OA property”: for a subset \(T \) of the columns, does the projection of \(A \) onto these columns contain every \(|T|\)-tuple over \(\mathbb{F}_q \) equally often?
- **orthogonal array of strength** \(t \): \(A \) has the OA property with respect to any set \(T \) of \(t \) or fewer columns
- **ordered orthogonal array**: Now assume \(n = s\ell \) and columns are labelled \(\{(i, j) : 1 \leq i \leq s, 1 \leq j \leq \ell \} \).
Ordered Orthogonal Arrays

- “OA property” with respect to column set \(T \): projection of \(A \) onto these columns contains every \(|T|\)-tuple over \(\mathbb{F}_q \) equally often.
Ordered Orthogonal Arrays

- **"OA property"** with respect to column set T: projection of A onto these columns contains every $|T|$-tuple over \mathbb{F}_q equally often.

- **ordered orthogonal array:** Now assume $n = s\ell$ and columns are labelled $\{(i, j) : 1 \leq i \leq s, 1 \leq j \leq \ell\}$.
Ordered Orthogonal Arrays

► “OA property” with respect to column set \(T \): projection of \(A \) onto these columns contains every \(|T| \)-tuple over \(\mathbb{F}_q \) equally often

► ordered orthogonal array: Now assume \(n = s\ell \) and columns are labelled \(\{(i, j) : 1 \leq i \leq s, 1 \leq j \leq \ell\} \)

► a set \(T \) of columns is “left-justified” if it contains \((i, j - 1)\) whenever it contains \((i, j)\) with \(j > 1 \)
Ordered Orthogonal Arrays

- **“OA property”** with respect to column set T: projection of A onto these columns contains every $|T|$-tuple over \mathbb{F}_q equally often.

- **ordered orthogonal array**: Now assume $n = s\ell$ and columns are labelled $\{(i, j) : 1 \leq i \leq s, 1 \leq j \leq \ell\}$.

- A set T of columns is “left-justified” if it contains $(i, j - 1)$ whenever it contains (i, j) with $j > 1$.

- **ordered orthogonal array of strength t**: A enjoys the OA property for every left-justified set of t or fewer columns.
Ordered Orthogonal Arrays

- "OA property" with respect to column set T: projection of A onto these columns contains every $|T|$-tuple over \mathbb{F}_q equally often

- ordered orthogonal array: Now assume $n = s\ell$ and columns are labelled $\{(i, j) : 1 \leq i \leq s, 1 \leq j \leq \ell\}$

- a set T of columns is "left-justified" if it contains $(i, j - 1)$ whenever it contains (i, j) with $j > 1$

- ordered orthogonal array of strength t: A enjoys the OA property for every left-justified set of t or fewer columns

- Lawrence/Mullen/Schmid: $\exists (T, M, S)$-net in base q $\iff \exists$ OOA over \mathbb{F}_q with q^m rows, $s = S$, $\ell = t = M - T$.
The Theorem of Mullen & Schmid and (indep.) Lawrence

Theorem (1996): \(\exists (T, M, S)\)-net in base \(q \) \(\iff \exists \text{OOA over } \mathbb{F}_q \)
with \(q^m \) rows, \(s = S \), \(\ell = t = M - T \)
Idea of Proof

\[N = \{ \left(\frac{0}{4}, \frac{0}{4} \right), \left(\frac{1}{4}, \frac{3}{4} \right), \left(\frac{2}{4}, \frac{2}{4} \right), \left(\frac{3}{4}, \frac{1}{4} \right) \} \]

\[T = \{ (1, 1), (1, 2) \} \]
Idea of Proof

\[\mathcal{N} = \{(.00, .00), (.01, .11), (.10, .10), (.11, .01)\} \]

\[T = \{(2, 1), (2, 2)\} \]
Idea of Proof

\[\mathcal{N} = \{(0.00, 0.00), (0.01, 0.11), (0.10, 0.10), (0.11, 0.01)\} \]

\[T = \{(1, 1), (2, 1)\} \]
Nets from Many Sources

two mutually orthogonal latin squares of order five (color/height)
Niederreiter/Xing Construction (Simplified)

- Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \geq 0$.

- Reed-Solomon code has a codeword for each polynomial $f(x)$ of degree $\leq k$:

 $c_f = [f(P_1), f(P_2), \ldots, f(P_s)]$

- A non-zero polynomial of degree at most k has at most k roots counting multiplicities!

- So take (T, M, S)-tuple $(M = k + 1)$

 $[f(P_1), f'(P_1), \ldots, f^{(k)}(P_1), \ldots, f(P_s), f'(P_s), \ldots, f^{(k)}(P_s)]$

 to get a powerful (T, M, S)-net
Niederreiter/Xing Construction (Simplified)

- Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \geq 0$
- Reed-Solomon code has a codeword for each polynomial $f(x)$ of degree $\leq k$:

$$c_f = [f(P_1), f(P_2), \ldots, f(P_s)]$$
Niederreiter/Xing Construction (Simplified)

- Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \geq 0$
- Reed-Solomon code has a codeword for each polynomial $f(x)$ of degree $\leq k$:

$$c_f = [f(P_1), f(P_2), \ldots, f(P_s)]$$

- a non-zero polynomial of degree at most k has at most k roots
Niederreiter/Xing Construction (Simplified)

- Let \(N = \{P_1, \ldots, P_s\} \) be a subset of \(\mathbb{F}_q \) of size \(s \), let \(k \geq 0 \)
- Reed-Solomon code has a codeword for each polynomial \(f(x) \) of degree \(\leq k \):
 \[
 c_f = [f(P_1), f(P_2), \ldots, f(P_s)]
 \]
- a non-zero polynomial of degree at most \(k \) has at most \(k \) roots
- \ldots counting multiplicities!
Niederreiter/Xing Construction (Simplified)

- Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \geq 0$
- Reed-Solomon code has a codeword for each polynomial $f(x)$ of degree $\leq k$:

$$c_f = [f(P_1), f(P_2), \ldots, f(P_s)]$$

- a non-zero polynomial of degree at most k has at most k roots
- ...counting multiplicities!
- So take SM-tuple $(M = k + 1)$

$$\begin{bmatrix}
 f(P_1), f'(P_1), \ldots, f^{(k)}(P_1) \\
 \ldots \ldots \ldots \\
 f(P_s), f'(P_s), \ldots, f^{(k)}(P_s)
\end{bmatrix}$$

... to get a powerful (T, M, S)-net
Niederreiter/Xing Construction (Simplified)

- Let $N = \{P_1, \ldots, P_s\}$ be a subset of \mathbb{F}_q of size s, let $k \geq 0$
- Reed-Solomon code has a codeword for each polynomial $f(x)$ of degree $\leq k$:

$$c_f = [f(P_1), f(P_2), \ldots, f(P_s)]$$

- a non-zero polynomial of degree at most k has at most k roots
- ... counting multiplicities!
- So take SM-tuple $(M = k + 1)$

$$\left[f(P_1), f'(P_1), \ldots, f^{(k)}(P_1) | \ldots | f(P_s), f'(P_s), \ldots, f^{(k)}(P_s) \right]$$

to get a powerful (T, M, S)-net
- They show that the same works over algebraic curves (global function fields)
Codes for the Rosenbloom-Tsfasman Metric

- the dual of a linear OA is an error-correcting code
Codes for the Rosenbloom-Tsfasman Metric

- the dual of a linear OA is an error-correcting code
- the dual of a linear OOA is a code for the Rosenbloom-Tsfasman metric
Codes for the Rosenbloom-Tsfasman Metric

➢ the dual of a linear OA is an error-correcting code
➢ the dual of a linear OOA is a code for the Rosenbloom-Tsfasman metric
➢ **Research Problem:** Are there any non-trivial perfect codes in the Rosenbloom-Tsfasman metric?
Part II: Resilient Functions

\[(T, M, S) \text{-Nets} \]

Resilient Functions

Fuzzy Extractors

William J. Martin

Abusing Codes
Resilient Functions

How can a code be used to bolster randomness?
Resilient Functions

We have a secret string x. An opponent learns t bits of x, but we don’t know which ones. After applying function f, we guarantee that our opponent knows nothing.
Resilient Functions

We have a secret string x. An opponent learns t bits of x, but we don’t know which ones. After applying function f, we guarantee that our opponents knows nothing.
Key Results

- **1985:** The bit extraction problem
 (Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)
Key Results

- **1985**: The bit extraction problem (Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)
- **1988**: Privacy amplification by public discussion (Bennett/Brassard/Robert)
Key Results

- **1985**: The bit extraction problem (Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)
- **1988**: Privacy amplification by public discussion (Bennett/Brassard/Robert)
- **1993**: Equivalent to large set of OA (Stinson)
- **1995**: First non-linear examples (Stinson/Massey)
- **1997**: All-or-nothing transforms (Rivest)
- **1999+**: Applications to fault-tolerant distributed computing, key distribution, quantum cryptography, etc.
Key Results

- **1985**: The bit extraction problem (Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)
- **1988**: Privacy amplification by public discussion (Bennett/Brassard/Robert)
- **1993**: Equivalent to large set of OA (Stinson)
- **1995**: First non-linear examples (Stinson/Massey)
Key Results

- **1985:** The bit extraction problem (Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)
- **1988:** Privacy amplification by public discussion (Bennett/Brassard/Robert)
- **1993:** Equivalent to large set of OA (Stinson)
- **1995:** First non-linear examples (Stinson/Massey)
- **1997:** All-or-nothing transforms (Rivest)

Applications to fault-tolerant distributed computing, key distribution, quantum cryptography, etc.
Key Results

- **1985**: The bit extraction problem (Chor/Goldreich/Håstad/Friedman/Rudich/Smolensky)
- **1988**: Privacy amplification by public discussion (Bennett/Brassard/Robert)
- **1993**: Equivalent to large set of OA (Stinson)
- **1995**: First non-linear examples (Stinson/Massey)
- **1997**: All-or-nothing transforms (Rivest)
- **1999+**: Applications to fault-tolerant distributed computing, key distribution, quantum cryptography, etc.
The Linear Case (Chor, et al.)

Let G be a generator matrix for an $[n, k, d]_q$-code.
The Linear Case (Chor, et al.)

- Let G be a generator matrix for an $[n, k, d]_q$-code
- Define $f : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^k$ via

$$f(x) = Gx$$
The Linear Case (Chor, et al.)

- Let G be a generator matrix for an $[n, k, d]_q$-code
- Define $f : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^k$ via

$$f(x) = Gx$$

- If $t \leq d - 1$ entries of x are deterministic and the rest are random and fully independent (denote $D_{T,A}$)
The Linear Case (Chor, et al.)

- Let G be a generator matrix for an $[n, k, d]_q$-code
- Define $f : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^k$ via
 \[f(x) = Gx \]
- If $t \leq d - 1$ entries of x are deterministic and the rest are random and fully independent (denote $\mathcal{D}_{T,A}$)
- ... then $f(x)$ is uniformly distributed over \mathbb{F}_q^k
The Linear Case (Chor, et al.)

- Let G be a generator matrix for an $[n, k, d]_q$-code
- Define $f : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^k$ via
 \[f(x) = Gx \]
- If $t \leq d - 1$ entries of x are deterministic and the rest are random and fully independent (denote $D_{T,A}$)
- ... then $f(x)$ is uniformly distributed over \mathbb{F}_q^k
- **Why?** Any linear combination of entries of $f(x)$ is a dot product of x with some codeword
The Linear Case (Chor, et al.)

- Let G be a generator matrix for an $[n, k, d]_q$-code
- Define $f : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^k$ via
 \[f(x) = Gx \]
- If $t \leq d - 1$ entries of x are deterministic and the rest are random and fully independent (denote $D_{T,A}$)
- \ldots then $f(x)$ is uniformly distributed over \mathbb{F}_q^k
- **Why?** Any linear combination of entries of $f(x)$ is a dot product of x with some codeword
- So any non-trivial linear function of entries involves at least one random input position
True Random Bit Generators (Sunar/Stinson/WJM)

- Random bits are expensive
True Random Bit Generators (Sunar/Stinson/WJM)

- Random bits are **expensive**
- Device must tap some physical source of known behavior
Random bits are **expensive**
Device must tap some physical source of known behavior
Even the best sources of randomness have “quiet” periods
True Random Bit Generators (Sunar/Stinson/WJM)

- Random bits are **expensive**
- Device must tap some physical source of known behavior
- Even the best sources of randomness have “quiet” periods
- Assuming 80% of input bits are random samples and 20% are from quiet periods
True Random Bit Generators (Sunar/Stinson/WJM)

- Random bits are expensive
- Device must tap some physical source of known behavior
- Even the best sources of randomness have “quiet” periods
- Assuming 80% of input bits are random samples and 20% are from quiet periods
- Resilient function collapses samples to strings one-tenth the size
True Random Bit Generators (Sunar/Stinson/WJMJ)

- Random bits are **expensive**
- Device must tap some physical source of known behavior
- Even the best sources of randomness have “quiet” periods
- Assuming 80% of input bits are random samples and 20% are from quiet periods
- Resilient function collapses samples to strings one-tenth the size
- What if quiet period is longer than expected?
Higher Weights (Generalized Hamming Weights)

- Start with a binary linear \([n, k, d]\)-code
Higher Weights (Generalized Hamming Weights)

- Start with a binary linear $[n, k, d]$-code
- Define $A_h^{(\ell)}$ as number of linear subcodes C', $\dim C' = \ell$, $|\text{supp } C'| = h$
Higher Weights (Generalized Hamming Weights)

- Start with a binary linear $[n, k, d]$-code
- Define $A_h^{(\ell)}$ as number of linear subcodes C', $\dim C' = \ell$, $|\text{supp } C'| = h$
- E.g. $A_h^{(1)} = A_h$ for $h > 0$, $A_h^{(\ell)} = 0$ for $h < d$ except $A_0^{(0)} = 1$
Higher Weights (Generalized Hamming Weights)

- Start with a binary linear \([n, k, d]\)-code
- Define \(A^{(\ell)}_h\) as number of linear subcodes \(C'\), \(\dim C' = \ell\), \(|\supp C'| = h\)
- E.g. \(A^{(1)}_h = A_h\) for \(h > 0\), \(A^{(\ell)}_h = 0\) for \(h < d\) except \(A^{(0)}_0 = 1\)
- The number of \(i\)-subsets of coordinates that contain the support of exactly \(2^r\) codewords is shown to be

\[
B_{i,r} = \sum_{\ell=0}^{k} \sum_{h=0}^{n} (-1)^{\ell-r} 2^{(\ell-r)} \binom{n-h}{i-h} \binom{\ell}{r} A^{(\ell)}_h
\]
Higher Weights (Generalized Hamming Weights)

- Start with a binary linear $[n, k, d]$-code
- Define $A_h^{(\ell)}$ as number of linear subcodes C', $\dim C' = \ell$, $|\text{supp } C'| = h$
- E.g. $A_h^{(1)} = A_h$ for $h > 0$, $A_h^{(\ell)} = 0$ for $h < d$ except $A_0^{(0)} = 1$
- The number of i-subsets of coordinates that contain the support of exactly 2^r codewords is shown to be

$$B_{i,r} = \sum_{\ell=0}^{k} \sum_{h=0}^{n} (-1)^{\ell-r} 2^{(\ell-r)} \binom{n-h}{i-h} \binom{\ell}{r} A_h^{(\ell)}$$

- Lemma (Sunar/WJM): Let X be a random variable taking values in $\{0, 1\}^n$ according to a probability distribution $D_{T,A}$. Then

$$\text{Prob}[H_{\text{out}} = k - r \mid |T| = i] = B_{i,r} \binom{n}{i}^{-1}.$$
A Research Problem

Higher weight enumerators are known only for very few codes:
- MDS codes: partial information only (Dougherty, et al.)
Higher weight enumerators are known only for very few codes:

- MDS codes: partial information only (Dougherty, et al.)
- Golay codes (Sunar/WJM, probably earlier)
Higher weight enumerators are known only for very few codes:

- MDS codes: partial information only (Dougherty, et al.)
- Golay codes (Sunar/WJM, probably earlier)
- Hamming codes

Can we work out these statistics for the other standard families of codes?
Part III: Fuzzy Extractors
Codes for Biometrics

How can we eliminate noise if we are not permitted to choose our codewords?
Selected References

- **1990s**: Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)
Selected References

- **1990s:** Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)
- **1987,1994:** Patents for iris recognition systems
Selected References

- **1990s**: Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)
- **1987, 1994**: Patents for iris recognition systems
- **2008**: Definition of “fuzzy extractor” (Dodis/Ostrovsky/Reyzin/Smith)
Selected References

- **1990s**: Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)
- **1987, 1994**: Patents for iris recognition systems
- **2008**: Definition of “fuzzy extractor” (Dodis/Ostrovsky/Reyzin/Smith)
- **2009**: CD fingerprinting (Hammouri/Dana/Sunar)
Selected References

- **1990s:** Ad-hoc mix of protocols (e.g., quantum oblivious transfer, crypto over noisy channels)
- **1987, 1994:** Patents for iris recognition systems
- **2008:** Definition of “fuzzy extractor” (Dodis/Ostrovsky/Reyzin/Smith)
- **2009:** CD fingerprinting (Hammouri/Dana/Sunar)
- **2009:** Physically unclonable functions (WPI team)
Fuzzy Extractors

A metric space \mathcal{M} and function $f: \mathcal{M} \times \{0,1\}^* \rightarrow \{0,1\}^*$ such that $f(w', x) = f(w, x)$ provided x valid for w and $d(w', w) < \epsilon$.

William J. Martin Abusing Codes
Fuzzy Extractors

Metric space \mathcal{M} and function $f : \mathcal{M} \times \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that $f(w', x) = f(w, x)$ provided x valid for w and $d(w', w) < \epsilon$.
Fuzzy Extractor: Toy Example

William J. Martin

Abusing Codes
Baseline reading $w = 3$ is obtained from temporal reading $w' = 2$ and hint $x = D$.
But w is not recoverable from either w' or x alone.
Code-Offset Construction (Dodis, et al.)

Fuzzy extractor for Hamming metric:
- Start with a binary \([n, k, d]\)-code with generator matrix \(G\)
Code-Offset Construction (Dodis, et al.)

Fuzzy extractor for Hamming metric:
- Start with a binary $[n, k, d]$-code with generator matrix G
- For each user, generate a random k-bit string m
Code-Offset Construction (Dodis, et al.)

Fuzzy extractor for Hamming metric:

- Start with a binary \([n, k, d]\)-code with generator matrix \(G\)
- For each user, generate a random \(k\)-bit string \(m\)
- For baseline reading \(w\), helper data is \(x = w + mG\)
Fuzzy extractor for Hamming metric:

- Start with a binary $[n, k, d]$-code with generator matrix G
- For each user, generate a random k-bit string m
- For baseline reading w, helper data is $x = w + mG$
- New reading w' is assumed to be within distance $d/2$ of w in large Hamming space
Code-Offset Construction (Dodis, et al.)

Fuzzy extractor for Hamming metric:
- Start with a binary \([n, k, d]\)-code with generator matrix \(G\)
- For each user, generate a random \(k\)-bit string \(m\)
- For baseline reading \(w\), helper data is \(x = w + mG\)
- New reading \(w'\) is assumed to be within distance \(d/2\) of \(w\) in large Hamming space
- To recover \(m\) from \(x\) and \(w'\), decode \(w' + x = mG + (w - w')\)
Code-Offset Construction (Dodis, et al.)

Fuzzy extractor for Hamming metric:

- Start with a binary $[n, k, d]$-code with generator matrix G
- For each user, generate a random k-bit string m
- For baseline reading w, helper data is $x = w + mG$
- New reading w' is assumed to be within distance $d/2$ of w in large Hamming space
- To recover m from x and w', decode $w' + x = mG + (w - w')$
- Provided k and d are both linear in n, recovery of m from just x or w' is hard
A Research Problem

Fuzzy extractors are known for several metrics:

- Hamming
A Research Problem

Fuzzy extractors are known for several metrics:

- Hamming
- Set difference (fuzzy vault scheme of Juels/Sudan)
Fuzzy extractors are known for several metrics:
- Hamming
- Set difference (fuzzy vault scheme of Juels/Sudan)
- Edit distance
A Research Problem

Fuzzy extractors are known for several metrics:

- Hamming
- Set difference (fuzzy vault scheme of Juels/Sudan)
- Edit distance

Can we build efficient fuzzy extractors for the Euclidean metric?
The End

Thank you all!