Inequalities for matrices and the L-intersecting problem

Richard M. Wilson
California Institute of Technology
Pasadena, CA 91125, USA

Systems of Lines
WPI, August 10, 2015
The L-intersecting problem

Given a set $L = \{\ell_1, \ell_2, \ldots, \ell_s\}$ of integers, a family \mathcal{F} of subsets is said to be L-intersecting when $|A \cap B| \in L$ for all $A, B \in \mathcal{F}$, $A \neq B$. How large can such a family \mathcal{F} be when \mathcal{F} is a k-uniform family of subsets of an n-set?

I am especially interested in the case when L and k are fixed and n is large or medium. It would be nice if the answer is of the form $O(n^e)$ for some e depending on L and k.

Theorem 1 (RC-W) If \mathcal{F} is a k-uniform L-intersecting family of subsets of an n-set, then

$$|\mathcal{F}| \leq \binom{n}{s}.$$
Ph. Delsarte proposed a “linear programming bound” (LPB) for cliques in association schemes that can be applied to the L-intersecting problem. A linear program can be run given the parameters L, k, and n to compute an upper bound. The LPB can be shown to be at least as good as the bound $\binom{n}{s}$, and is often dramatically better!
For example, suppose $L = \{1, 3, 6, 8, 12, 13, 16, 17\}$ and $n = 100$.

\[
\text{RC - W} \quad |F| \leq \binom{100}{8} = 186087894300
\]

LPB when $k = 39 \quad |F| \leq 1852.71$

LPB when $k = 34 \quad |F| \leq 328578.7$
But an idea of P. Frankl and W. can sometimes beat the LPB. Again, suppose $L = \{1, 3, 6, 8, 12, 13, 16, 17\}$ and $n = 100$.

\[
\begin{align*}
\text{RC} - \text{W} & \quad |F| \leq \binom{100}{8} = 186087894300 \\
\text{LPB when } k = 39 & \quad |F| \leq 1852.71 \\
\text{LPB when } k = 34 & \quad |F| \leq 328578.7 \\
\text{FW when } k \equiv 4 \pmod{5} & \quad |F| \leq \binom{100}{3} = 161700
\end{align*}
\]
For $L = \{1, 3, 6, 8, 12, 13, 16, 17\}$ and general n,

RC – W \quad |\mathcal{F}| \leq \binom{n}{8}

LPB when $k = 39$ \quad |\mathcal{F}| \leq \mathbf{?}

LPB when $k = 34$ \quad |\mathcal{F}| \leq \mathbf{?}

FW when $k \equiv 4 \pmod{5}$ \quad |\mathcal{F}| \leq \binom{n}{3}$
Similar theorems

Theorem 2 (Delsarte et. al.) If F is a two-distance set on the sphere in \mathbb{R}^d, then

$$|F| \leq \binom{d+2}{2} - 1.$$

Theorem 3 (Gerzon) If F is a set of n equiangular lines through the origin in \mathbb{R}^d, then

$$|F| \leq \binom{d+1}{2}.$$
The RC-W and F-W inequalities can be explained in terms of the intersection matrix of a family \mathcal{F} of sets. This is the matrix M whose rows and columns are indexed by the members of \mathcal{F} and where the entry $M(A, B)$ in row A and column B is $|A \cap B|$.

In thinking about these and other inequalities again, I wondered what might be said in general about the relation between rank and the number of distinct off diagonal elements of matrices. Here are a few simple observations.
Theorem 4 If M is matrix of order n with rank r such that the number of distinct values off the diagonal is s and none of these values appear on the diagonal, then

$$n \leq \binom{r + s}{s}.$$

For any matrix M and any polynomial f, let $f(M)$ denote the matrix obtained from M by applying f to each entry of M.
Proof. For a matrix M, let $M^\circ j$ denote the Hadamard product $M \circ M \circ \cdots \circ M$ with k factors. If b_1, \ldots, b_r is a basis for the row space of M, then a spanning set for the row space of $M^\circ j$ is provided by all Hadamard products

$$b_{i_1} \circ b_{i_2} \circ \cdots \circ b_{i_j}$$

of j of the basis rows of M. So the rank of $M^\circ j$ is at most \(\binom{r+j-1}{j} \). If

$$f(x) = c_dx^d + c_{d-1}x^{d-1} + \cdots + c_1x + c_0$$

is a polynomial of degree d, then

$$f(M) = c_dM^\circ d + c_{d-1}M^\circ(d-1) + \cdots + c_1M + c_0J$$
and hence the rank of $f(M)$ is at most

$$(r + d - 1) + (r + d - 2) + \ldots + r + 1 = (r + d).$$

(More generally, the rank of $f(M)$ is bounded above by the sum of $\binom{r+i-1}{i}$ over those i for which $c_i \neq 0$.)

Anyway, if we take

$$f(x) = (x - \ell_1)(x - \ell_s) \cdots (x - \ell_s)$$

where the ℓ_i's are the off diagonal entries, then $F(M)$ is diagonal with nonzero diagonal entries, and so has rank n. \square
For example, when $s = 1$, we have $n \leq r + 1$, or $r \geq n - 1$.

When $s = 2$ (e.g. when M is the adjacency matrix of a graph with no vertices of degree 0 or 1), $n \leq \frac{1}{2}(r + 1)(r + 2)$, which implies

$$r + 2 \geq \sqrt{2n}.$$

Any eigenvalue $\lambda \neq -1, 0, +1$ of a $(0,1)$-matrix M cannot have multiplicity greater than $n + 2 - \sqrt{2n}$.
This theorem gives approximations to Theorems 1, 2, and 3.

If \(M \) is the intersection matrix of an \(L \)-intersecting family \(\mathcal{F} \) of subsets of an \(m \)-set, where \(|L| = s \) and so sets have sizes in \(L \), then \(M = N^T \top N \) where \(N \) is the point-set incidence matrix of the family and has rank at most \(m \). Thus the size \(|\mathcal{F}| \) of \(M \) is at most \(\binom{m+s}{s} \).

But see below. E.g. When \(\mathcal{F} \) is \(k \)-uniform, the row space of \(M \) contains the vector of all 1’s, so \(|\mathcal{F}| \leq \binom{m}{s} \).

When \(F \) is a spherical 2-distance set in \(\mathbb{R}^d \), let \(N \) be the matrix whose rows are the vectors in \(F \). Then \(M = NN^\top \) has two distinct entries, so its size \(|F| \) cannot exceed \(\binom{d+2}{2} \).
When F is a equiangular set of lines in \mathbb{R}^d, let N be the matrix whose rows consist of one unit vector from each line. Then $M = NN^\top$ has two off-diagonal entries, c and $-c$ for some c. so its size $|F|$ cannot exceed $\binom{d+2}{2}$.

[The polynomial $(x - c)(x + c)$ has no x-term, so this last bound can be instantly improved to $\binom{d+2}{2} - d$.]
Generalizations

Theorem 5 If \(M \) is matrix of order \(n \) with rank \(r \) such that the number of distinct values above the diagonal is \(s \) and none of these values appear on the diagonal, then

\[
n \leq \binom{r + s}{s}.
\]

Theorem 6 Let \(M \) be a matrix of order \(n \) with rank \(r \) such that the number of distinct values above the diagonal is \(s \) and none of these values appear on the diagonal. If the vector of all 1's belongs to the row space of \(M \), then

\[
n \leq \binom{r}{s}.
\]
Theorem 7 If M is a $(0, 1)$-matrix of order n with rank r such that the number of distinct values above the diagonal is s and none of these values appear on the diagonal, then

$$n \leq \binom{r}{s} + \binom{r}{s-1} + \cdots + r + 1.$$

Theorem 8 Let M is a $(0, 1)$-matrix of order n with rank r such that the number of distinct values above the diagonal is s and none of these values appear on the diagonal. Then

$$n \leq \binom{r}{s}.$$

The same conclusion holds if the row space of M is spanned by its $(0, 1)$-vectors.

We can deduce the full Theorems 1, 2, and 3 by refining the arguments above. Unfortunately, this slide is too small to contain
The L-intersection Problem Again

Theorem 9 (FW) Let $L = \{\ell_1, \ell_2, \ldots, \ell_s\}$. Suppose there exists a rational polynomial $f(x)$ of degree d and a prime p so that

$$f(\ell_i) \equiv 0 \pmod{p} \quad \text{for } i = 1, 2, \ldots, s, \quad \text{but} \quad f(k) \not\equiv 0 \pmod{p}. \quad (1)$$

Then for an L-intersecting k-uniform family \mathcal{F}

$$|\mathcal{F}| \leq \binom{n}{d}.$$

Note that f is required to take integer values on k and the ℓ_i’s, but need not be integer-valued in general.

Idea of proof: Let M be the intersection matrix. Then $f(M)$ is nonsingular modulo p and hence nonsingular.
A corollary with $f(x) = (x - \ell_1)(x - \ell_2)\ldots(x - \ell_r)$ is

Corollary 10 *If k is not congruent to any of $\ell_1, \ell_2, \ldots, \ell_r$ modulo p but $|A \cap B|$ is congruent to one of $\ell_1, \ell_2, \ldots, \ell_r$ modulo p for all distinct $A, B \in \mathcal{F}$, then*

$$|\mathcal{F}| \leq \binom{n}{r}.$$

Example: If k is even and the elements of L are odd, then $|\mathcal{F}| \leq n$. Use $f(x) = x - 1$ and $p = 2$.
Suppose \(L = \{1, 3, 6, 8, 12, 13, 16, 17\} \) and \(n = 100 \).

\[
\begin{align*}
\text{RC} - \text{W} & \quad |\mathcal{F}| \leq \binom{100}{8} = 186087894300 \\
\text{LPB when } k = 39 & \quad |\mathcal{F}| \leq 1852.71 \\
\text{LPB when } k = 34 & \quad |\mathcal{F}| \leq 328578.7 \\
\text{FW when } k \equiv 4 \pmod{5} & \quad |\mathcal{F}| \leq \binom{100}{3} = 161700
\end{align*}
\]
Theorem 11 (Keevash-Mubayi-W), 2006 Let \mathcal{F} be a 1-avoiding k-uniform family of subsets of an n-set, $k \geq 3$. Then $\mathcal{F} \leq \binom{n}{k-2}$.

Proof. Take $f(x) = \binom{x-2}{k-2}$. Then $f(k) = 1$,

$$f(k-1) = f(k-2) = \cdots = f(3) = f(2) = 0, \quad f(0) = \pm (k-1).$$

Choose p as any prime divisor of $k-1$. \qed
Theorem 12 If $k - t = p^e$ for some prime p and positive integer e, and if \mathcal{F} is k-uniform and t-avoiding with $k \geq 2t$, then

$$|\mathcal{F}| \leq \binom{n}{k - t}.$$

Remark: This bound is weaker than that of the Frankl-Füredi Theorem, but it holds for all n, not just sufficiently large n.

Proof. Let $f(x) = \binom{x - t}{k - t}$. Then $f(k) = 1,$

$$f(k - 1) = f(k - 2) = \cdots = f(t) = 0,$$

and

$$f(t - j) = \binom{-j}{k - t} = (-1)^{k-t}\binom{k-t+j-1}{k-t} \equiv 0 \pmod{p}$$

for $j = 2, 3, \ldots, k - t - 1$. \qed
As an example, when \(s = 2 \) and \(|A \cap B| \in \{\alpha, \beta\} \), Theorem 1 says \(|\mathcal{F}| \leq \binom{n}{2} \). But if there exists a prime divisor \(p \) of \(\beta - \alpha \) that does not divide \(k - \alpha \), we may use the polynomial \(f(x) = x - \alpha \) in Theorem 9 to deduce \(|\mathcal{F}| \leq n \). More generally, if the \(p \)-contribution to \(k - \alpha \) is \(p^e \) but the \(p \)-contribution to \(\beta - \alpha \) is higher, we may consider the rational polynomial \(f(x) = (x - \alpha)/p^e \). In summary,

\[
|\mathcal{F}| \leq \binom{n}{2} \quad \text{and in fact} \quad |\mathcal{F}| \leq n \quad \text{unless} \quad (\beta - \alpha) | (k - \alpha).
\]

We remark that if \(\beta - \alpha \) does divide \(k - \alpha \), there exists a \(\{\alpha, \beta\} \)-intersecting family of \(cn^2 \) \(k \)-subsets.
When d is chosen to be the least integer for which (1) holds for some rational polynomial $f(x)$ and prime p, we may call the upper bound $\binom{n}{d}$ the “modular bound” (MB) for $|\mathcal{F}|$.

The MB uses only the values of k and the ℓ_i’s, and gives a bound valid for all n. There are numerous instances when the MB is better than the LPB, and many where the LPB is better.

Example: Let $L = \{4, 7\}$ and $k \equiv 1 \pmod{3}$. Start with the blocks of an $S(2,(k - 4))/3,n)$. Replace each point by three points. The inflated blocks meet in 0 or 3 points. Add four new points to each inflated block. We get an L-intersecting k-uniform family of cn^2 subsets of a $(3n + 4)$-set.
Do good polynomial-prime pairs exist?

The following is part of joint work with Tian Nie.

Theorem 13 Let integers k and $\ell_1, \ell_2, \ldots, \ell_s$ be given. There exists a rational polynomial $f(x)$ of degree d and a prime p so that (1) holds if and only if the vector $(1, k, k^2, \ldots, k^d)$ is NOT an integer linear combination of the rows

$$(1, \ell_i, \ell_i^2, \ldots, \ell_i^d), \quad i = 1, 2, \ldots, s.$$

This follows from well-known necessary and sufficient conditions for the existence of solutions of systems of equations in integers.
For a m by n integer matrix A with $m \leq n$, we use the term
content of A for the product of the m invariant factors of A, and we denote this by $\kappa(A)$. This is the same as GCD of the
m by m submatrices of A. It is the order of the abelian group
$\mathbb{Z}^m/\text{col}_{\mathbb{Z}}(A)$. It may be computed using algorithms for Smith
normal form.

Theorem 14 Let integers k and $\ell_1, \ell_2, \ldots, \ell_s$ be given. For $d \leq s$, the vector $(1, k, k^2, \ldots, k^d)$ is a integer linear combination of the rows

$$(1, \ell_i, \ell_i^2, \ldots, \ell_i^d), \quad i = 1, 2, \ldots, s$$

if and only if the content G_0 of $M = (\ell_i^j)$ is the same as the content G_1 of the matrix M^* obtained by appending $(1, k, k^2, \ldots, k^d)$ to M.
This is because the order of $\text{row}_Z(M')/\text{row}_Z(M)$ is $\kappa(M)/\kappa(M')$.

Theorem 15 There exists a rational polynomial $f(x)$ of degree $\leq s - 1$ and a prime p so that

\[f(\ell_i) \equiv 0 \pmod{p} \quad \text{for } i = 1, 2, \ldots, s, \quad \text{but} \quad f(k) \not\equiv 0 \pmod{p}. \quad (*) \]

if and only if for some j, $1 \leq j \leq s$,

\[\prod_{i: i \neq j} (\ell_j - \ell_i) \quad \text{does NOT divide} \quad \prod_{i: i \neq j} (k - \ell_i). \]
Example: $s = 2$, $L = \{\alpha, \beta\}$. An improved bound $|\mathcal{F}| \leq n$ will hold unless both

$$\alpha - \beta \mid k - \beta \quad \text{and} \quad \beta - \alpha \mid k - \alpha$$

hold. (They are equivalent.)

Example: $s = 3$, $L = \{\alpha, \beta, \gamma\}$. An improved bound $|\mathcal{F}| \leq \binom{n}{2}$ will hold unless all of

$$(\alpha - \beta)(\alpha - \gamma) \mid (k - \beta)(k - \gamma)$$

$$(\beta - \alpha)(\beta - \gamma) \mid (k - \alpha)(k - \gamma)$$

$$(\gamma - \alpha)(\gamma - \beta) \mid (k - \alpha)(k - \gamma)$$

hold.
Remark: If \(L \) consists of a set of \(s \) consecutive integers, then there are no polynomials of degree \(< s \) that can be used in (1). This follows from Theorem 15 and also because we can construct \(k \)-uniform \(L \)-intersecting families of \(cn^s \) subsets of \(n \)-sets.

For example, if \(L = \{2, 3, 4, 5\} \) and \(k = 9 \), and \(L \)-intersecting 9-uniform family \(\mathcal{F} \) can be obtained by adding two new points to each block of a Steiner system \(S(4, 7, n - 2) \), and for this family \(|\mathcal{F}| = cn^4 \).
The case $k = 10$, $s = 3$. Of the 120 relevant 3-subsets L, whether the bound $O(n^2)$ holds is settled in all but 15 instances. For 11 choices of L, there exist $c n^3$ 10-subsets. For 94 choices of L, $|\mathcal{F}| \leq \binom{n}{2}$. The 15 unsettled cases are

$$\{0, 1, 3\}, \{0, 1, 6\}, \{0, 4, 6\}, \{1, 2, 4\}, \{1, 2, 5\},$$
$$\{1, 3, 4\}, \{1, 5, 6\}, \{2, 4, 5\}, \{2, 4, 8\}, \{2, 5, 7\},$$
$$\{3, 4, 6\}, \{3, 6, 7\}, \{4, 5, 7\}, \{5, 7, 8\}, \{6, 7, 9\}.$$

When $L = \{0, 1, 3\}$, we have $|\mathcal{F}| \leq \binom{n}{2}$ when $k \equiv 2 \pmod{3}$. When $k = 7$ and $k = 9$, the inequality $|\mathcal{F}| \leq \binom{n}{2}$ fails infinitely often (planes of projective spaces over \mathbb{F}_2 and affine spaces over \mathbb{F}_3). But $k = 10$ is open.