1. Consider the grid of lines $z = n + it$ and $z = s + im$.

Find the image of this grid in the w plane for each of the following:

a) $w = 2z + i(1 - z)$.

![Diagram showing the transformation of the grid lines under the mapping $w = 2z + i(1 - z)$]
b) $w = z^2$.
c) \(w = z^2 + iz \)
d) \(w = e^z \).
e) $w = \cos(z)$.
2. Consider the polar grid \(z = ne^{i\theta} \) and \(z = te^{ik\pi/12} \).

Find the image of this grid in the \(w \) plane for each of the following:

a) \(w = 2z + i(1 - z) \).
b) \(w = z^2 \).
c) $w = z^3$
d) $w = e^z$.
e) \(w = \cos(z) \).
3. For $w = 3z^2 - 2z^3$, sketch in the z plane all the curves which map to the real and imaginary axes in the w plane. Label each resulting region in the z plane according to which quadrant in the w plane it maps to.

Finally, give your best guess as to the net of curves which map to horizontal and vertical lines in the w plane.