Deep Brain Stimulation for Parkinson’s Disease

Hao Su
Advised by Prof. Yitzhak Mendelson
Worcester Polytechnic Institute
Presentation Outline

- Parkinson’s Disease Overview
- Deep Brain Stimulation
 - Physiology and Working Principle
 - Patient Selection Criteria
- Surgical Procedures
 - Frame Based Stereotactic Surgery
 - Frameless Stereotactic Surgery
- Discussion
Movement Disorder Diseases

- Parkinson’s Disease
 - Neurodegenerative disorder
 - Tremor
 - Rigidity
 - Postural instability

- Dystonia
 - Muscle contractions
 - Abnormal postures
 - Symptoms increased with movement
Parkinson’s Disease Celebrity

Michael J. Fox Muhammad Ali Brian Grant

Deng Xiaoping Salvador Dali Pope John Paul
Deep Brain Stimulation

Surgical implantation of a brain pacemaker to generate electrical impulses and stimulate specific parts of the brain

- **Target disease**
 - Parkinson’s Disease
 - Dystonia
 - Chronic Depression

- **Electrical characteristics**
 - Voltage (0-7 volts)
 - Pulse width (65-450 msec)
 - Frequency (130-180 Hz)
 - Lead location (4 leads, each 1.5 mm apart)
Motivation from Historical Perspective

- 1940-1950s: Pallidotomy - surgically created brain lesion to control tremor
- 1960s: Levodopa as medicine treatment of PD
- Before 1990s: Dyskinesias - drug induced, involuntary withering and twisting after medication for years or resistive to medication
- 1990s: Benabid (France) first DBS- electrical stimulation of thalamus

DBS is approved for the treatment of symptom

- Parkinson’s disease (PD: FDA 2002)
- Essential Tremor (ET: FDA 1997)
- Dystonia (FDA 2003)
- Over 35,000 patients implanted worldwide
Physiology and Working Principle

- **Neurostimulator**
 - Implantable pulse generator (IPG)
- **Lead**
 - 4 thin insulated, \(\phi 1.27 \text{mm} \)
 - Coiled wires bundled
- **Wire**

Images courtesy of Medtronic and Grégoire Walckiers
Working Principle Cont’d

- Implantable pulse generator: metallic and insulated
- Return current electrode (RCE) for monopolar and unbalanced
- Voltage stimulation vs. current stimulation
- Most are monopolar and voltage controlled stimulation

Images courtesy of Grégoire Walckiers
Patient Selection Criteria

Disease Severity
- Mild
- Moderate
- Severe

Patient Symptoms
- Signs of levodopa “wearing-off”
- Dyskinesia, “On-Off” Motor Fluctuations
- Postural Instability, Freezing, Falls

Treatment
- Agonists
- Levodopa
- DBS

Good DBS Candidate
- Typical PD with tremor
- Good response to individual doses of levodopa
- Dyskinesias
- Wearing-off spells
- Good general health

Poor DBS Candidate
- Atypical parkinsonism
- Poor response to levodopa
- Memory problems, apathy or confusion
- Severe depression or anxiety
- Severe medical problems

Modified from Medtronic’s Activa-DBS-Therapy-Overview
Framed DBS Lead Placement Workflow

MRI Imaging → Preoperative planning → Attach Leksel frame

Lead placement → MRI2CT Registration → CT Imaging

Images courtesy of GE, Elekta, Slicer, Mayo Clinic, katalogo, wiki in order
Framed DBS Tool: Stereotactic Frame

Leksell® Coordinate System
The frame is engraved with a rectilinear coordinate scale, graduated in millimeters. The scale conforms with the X, Y, and Z directions used in CT and MR scanning. Origo (X, Y, Z = 0) is located outside the frame at a point that is superior, lateral, and posterior to the frame on the patient’s right side.

L = left side
R = right side
P = posterior side
A = anterior side

Stereotactic Arc (2 DoF)

Images are modified from elekta.com
Framed Stereotactic Surgery

- Neuroguide® Guide tube
 - Long term implanted with threaded area bonded skull
 - Extends into brain as conduit for electrode introduction

- Neuroguide® Stylet
 - Short-term implant to verify target position

Images courtesy of Renishaw and Patel 2007
Frameless DBS Lead Placement Workflow

1. MRI Imaging
2. Fiducial attached
3. Preoperative planning

- Nexdrive+Nexframe
- Sterile registration
- Non-sterile registration

Images courtesy of GE and Sriki Jvilaikul et al.
Frameless Stereotactic Surgery

Images courtesy of Renishaw, Nathoo 2005 and Haidegger 2008
Frameless Stereotactic Surgery Tracking

\[\text{Control}_{DRB} = \text{DRB}_{Nav} T \cdot \text{Nav}_{Tool1} T \cdot \text{Tool1}_{Tool2} T \cdot \text{Tool2}_{RW} T \cdot \text{Control}_{RW} \]

Images courtesy of Haidegger 2009 EMBC
Frameless Stereotactic Surgery Calibration

\[
\begin{align*}
\text{pivotPoint} & = R_k \cdot \text{cutterTip} + T_k \\
R_k \cdot \text{cutterTip} - \text{pivotPoint} & = -T_k \\
\begin{bmatrix}
\vdots \\
R_k \\
\vdots \\
\end{bmatrix}
\begin{bmatrix}
\vdots \\
-1 \\
\vdots \\
\end{bmatrix}
\begin{bmatrix}
\text{cutterTip} \\
\text{pivotPoint} \\
\vdots \\
\end{bmatrix}
& =
\begin{bmatrix}
\vdots \\
-T_k \\
\vdots \\
\end{bmatrix}
\end{align*}
\]

Images courtesy of Haidegger 2008
Confirmation: Microelectrode Recording

Microelectrode Recording: MER increases morbidity
Future trends: miniaturized MER integrated with electrodes

Image and sound data courtesy of Medtronic
Framed and Frameless Surgery Comparison

- **Frame Based Stereotactic Surgery**
 - Time consuming
 - Patient uncomfortable/painful

- **Frameless Stereotactic Surgery**
 - Higher cost
 - Optical tracking
 - Still painful

- **Some issues:**
 - Brain Shift
 - Pain

Stryker’s Patient Registration Mask
Stimulator Placement and Programmable Device

- **Stimulator Implantation**
 - Done immediately or days/weeks later
 - Typically placed below clavicle

- **Programmable Device**
 - Non-invasive adjustment
 - Selection of electrodes
 - Some side-effects after adjustment
Surgery Cost

- **NeuroMate system (stereotactic frame-based version) - $362,430**
 - robotic arm and base
 - central control unit for the arm
 - visualization workstation
 - software for planning and position simulation
- **Stereotactic Frame (+ $88,380) + Frameless Stereotaxy (+$236,368)**
 - Head frame + base
 - Specific localizers
 - Ultrasound system
- **Maintenance (+ $61,850/year)**
- **Sterile Operative Cover (+ $250/operation)**
- **Electrode, stimulator, unilateral, bilateral......**

Data courtesy of brown.edu
State of the Art Technology: iMRI

- iMRI: Interventional MRI
 - Imaging during surgery
 - Real-time confirmation
 - Reduced surgical time
 - Increased targeting accuracy

- Challenges:
 - Strong magnetic field
 - Confined space
Discussion

- **Benefits**
 - Bilateral, reversible and adjustable
 - Non-destructive versus ablative procedures
 - Effective pain control
 - Reprogrammable without surgery

- **Complications and Risks**
 - Brain hemorrhage
 - Infection
 - Inaccurate electrode placement
 - Shocking sensation
 - Balance impairment
 - Muscle spasm and contraction

 - Surgery related
 - Stimulation related
Thank you for your time

Questions?

Email: haosu@wpi.edu
Mechanical Engineering
Automation and Interventional Medicine Robotics Lab