
A REALLY ELEMENTARY PROOF OF THÉBAULT’S THEOREM

DIMITRIOS KODOKOSTAS

An exceptionally beautiful Theorem with a very elementary statement is Thébault
Theorem:
Theorem. Let P be a point on the side BC ofthe triangle ABC. Let I be

the incenter of ABC and O1, O2 be thecenters of the circles c1, c2 which touch

the sides ofBPA, CPA respectively and which further both touch internally the

circumference c of ABC. ThenI lies on the line O1O2.
Unfortunately, despite its elementary statement all known proofs lie beyond the

grasp of a high school student or even of an average college student majoring in
mathematics.
The object of this paper is to provide a really concise and elementary proof of the

theorem within the frame of its ”natural environment”, i.e. Euclidean Geometry.
A concise history of the theorem can be found in [1]. It was proposed as a

conjecture by Victor Thébault in 1938 ([2]). The first proof was given in 1983 ([3])
but only a brief summary of the 24 pages of the lengthy calculations of the proof
was ever published. Most of the proofs given since then ([1], [4] and others) were
heavily based on the aid of computers. Proofs using a mixture of Euclidean and
projective methods can be found in [5], [6], [7]. Beyond its long history and beauty
this Theorem also has an almost benchmark problem status in Groebner theory.
The proof will be given through a series of seven small claims. The first of

them provides useful information about the relation among the tangency points of
some circles and lines in special position. The next three claims consist of the core
argument of the proof. The last four deal with purely technical details (a bunch of
trivialities) settling down the question of how a picture of the situation should look
like. Accordingly, the paper splits in two parts: claims 1 to 4 consisting the "CORE
ARGUMENT OF THE PROOF", and claims 5 to 8 consisting the "TECHNICAL
DETAILS". Although these details are necessary for a solid mathematical proof,
they can be omitted without any real loss.
CORE ARGUMENT OF THE PROOF

Claim 1. Let Ni,Ki be the common points of ci with c and BC respectively (for
i = 1, 2), and let us call M the midpoint of the arc BC of c, which does not contain
A. Then the points M,Ki, Ni are collinear (Figure 1).

Claim 2. If KiI intersects ci again at Li then the points A, I,Ni, Li are concyclic
(i = 1, 2) (Figure 2a).

Claim 3. The line ALi is tangent to ci (i = 1, 2) (Figure 2b).

Claim 4. Theorem 1 holds.

Proof. of Claim 1 for i = 1 (and similarly for i = 2):
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It is a well known result that the points O,O1,N1 are collinear (Figure 1), and

each one of K1O1N1, MON1 is isosceles, thus

O1N1K1 = (180
0 −N1O1K1)/2 and ON1M = (1800 −N1OM)/2(1)

But O1K1 n OM (since they are both perpendicular to BC). So

N1O1K1 = N1OM(2)

[(1), (2)] =⇒ O1N1K1 = ON1M =⇒ ON1K1 = ON1M and since the half-lines
N1K1,N1M lie at the same half-plane with respect to the line N1O, we conclude
that they coincide, thus the points K1, N1,M are collinear as claimed.

Proof. of Claim 2 for i = 1 (and similarly for i = 2):
Notice that there exists a common tangent x N1x of c1, c at N1, and let B, x

be at the same half-plane with respect to OO1 (Figure 2a). It is

N1AI = N1AM = x N1M
Claim 1
= x N1K1 = N1L1K1 thus the pointsN1, A, I, L1

are concyclic.

Proof. of Claim 3 for i = 1 (and similarly for i = 2):
Since by the previous Claim, the points N1, A, I, L1 are concyclic we have (Figure

2b):

N1L1A = N1IA = 180
0 −N1IK1 −K1IM(3)
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Let’s observe that the line MB is tangent to the circumference of BN1K1 because

MBK1 = A/2 = BN1M
Claim1
= BN1K1 . Thus

MB2 =MK1 ·MN1(4)

But a well known property of the incenter I of ABC is that

MI =MB(5)

(4),(5) imply MI2 =MK1 ·MN1. This means that MI is tangent to the circum-
ference of K1N1I, thus

K1IM = K1N1I(6)

[(3), (6)] imply N1L1A = 1800 −N1IK1 −K1N1I and looking at K1N1I the last
relation can be written as N1L1A = N1K1L. But this means that AL1 is tangent
to c1, QED.

Proof. of Claim 4:

Since K1L1, K2L2 are the tangent chords of c1, c2, with the sides of BPA,CPA
respectively, we have (Figure 3): O1P ⊥ K1L1, O2P ⊥ K2L2 and O1P ⊥ O2P .
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Calling T1 = O1P ∩K1L1 and T2 = O2P ∩K2L2, we have then that IT2PT1 is
a (rectangular) parallelogram, and so

IT2 = T1P(7)

We also have that the acute angles O1PK1, PO2K2 of the triangles O1K1P,O2K2P
are equal. This implies that the triangles are similar. Since T1, T2 are the projec-
tions of the vertices of the right angles to the hypotenuses of these triangles, their
similarity implies O1P/T1P = O2P/T2O2 and then (7) gives

O1P/IT2 = O2P/O2T2(8)

But O1P is parallel to IT2. Then according to the converse of Thales’ Theorem,
relation (8) implies that O1, I, O2 are collinear as wanted.

TECHNICAL DETAILS
The above proof of Claim 4 (i.e. of Thébault’s Theorem) is all perfect except

for a tiny detail; namely, that one cannot take it for granted that (for i = 1, 2) the
tangent ALi of A to ci coincides with the tangent AP of A to ci. It could be the
case that the tangents ALi, AP of A to ci are different for one or even both indices
i = 1, 2! That this is not so is the end result of the four Claims (5-8) below.

Claim 5. I lies outside one of c1, c2 and inside the other (Figure 4), or it lies on
both of them.

Note that whenever the point I lies on both c1, c2, it is necessary a common
tangent point for both circles with the line AP . Of course in this case Thébault’s
Theorem is a triviallity and we are not dealing further with it anywhere in this
paper. By the way, note also that in proving Claims 3, 4 we dealt only with circle
c1, in which case according to a silent convention the point I is interior to the circle
and to the segment AP . But nothing changes if we deal with the circle c2 as well.

Claim 6. The line ALi intersects the line BC in a point of the segment BC (Figure
5).

Claim 7. The tangent line from A to ci other than AP (i = 1, 2) does not intersect
the line BC in a point of the segment BC.

Claim 8. Line AP coincides with ALi, (i = 1, 2).
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Proof. of Claim 5:
Of course it is true that I lies on the segment AM .
The half-line AIM belongs to one of BAP,CAP , let this be CAP , as in Figure

4. Then, since c1 lies in the exterior of CAP , the point I lies outside c1.
Notice now that line AC leaves the points N2,K2 of c2 in different half-planes,

thus it has to intersect c2. The part of c2 in the half-plane with respect to AC in
which K2 lies, belongs entirely in the angle PAC touching both sides of the angle.
Thus the half-line AIM which belongs to the PAC has to intersect c2; say at points
M1,M2.
Since by Claim 1 the point K2 lies in the segment N2M , the power of M with

respect to c2 is

MM1 ·MM2 =MK2 ·MN2(9)

Noticing now that MCK2 = MCB = MAB = CAB/2 = CAM = CN2M , we

conclude that CM is tangent to the circumference of CN2K2 which translates to

MK2 ·MN2 =MC2 =MI2(10)

(the last equality is a well known one).
(9),(10) imply that MM1 ·MM2 = MI2 which in turn assures us that I is a

point of the segment M1M2. Thus I lies inside c2.
Whenever the line AM coincides with the line AP (Figure 7), if we call I the

tangent point of line AP with c1, then MI 2 = MK1 ·MN1. But the triangles
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MBK1, MBN1 are similar, thusMK1 ·MN1 =MB2. We conclude MB2 =MI 2
. Now note that as already mentioned, the incenter of ABC satisfies MI2 =MB2

implyingMI2 =MI 2. So I has to coincide with I .Then the second common point
L1 of the line K1I with c1 is I itself as claimed. We similarly prove that I coincides
with L2.

For what follows we assume that I is interior to c2 and exterior to c1 as in
Figure 4.

Proof. of Claim 6:
i) Line MN1 splits c1 into two arcs, one of them lying at the same half plane

with respect to MN1 as A does (Figure 6a). Call this arc c1 and the half plane π.
Let also E be the interior of c1 lying in π.
I is a point of π, and by Claim 5 it is exterior to E. Thus trivially c1 intersects

the segment K1I in one more point other than K. Of course this is the second
point of intersection of c1 with the line K1I, called L1.

Observe that the segment K1I is an interior segment of AK1T (where T is the
intersection point of the segments BC and AIM). Thus the line AL1 intersects the
line K1T in a point of the segment K1T , so it intersects line BC at a point of the
segment BC.
ii) Line AM splits c2 into two arcs c2, c3 and let K2 lie in c3 (Figure 6b). Since I

lies on the chord M1M2 of c2 the line K2I intersects c2 in a point. This is of course
the second common point of K2I and c, called L2. But c2 lies in the interior of the
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angle BAT of BAT . So L2 does so. Then of course the line AL2 intersects BC in
a point of the segment BT , thus in a point of the segment BC.

Proof. of Claim 7 for i = 1 (and similarly for i = 2):
If the second tangent from A to c1 is parallel to BC we are done.
So let’s assume that the second tangent from A to c1 intersects the line BC at

a point A1.
-If we moreover assume for a moment that A1 is a point of the segment BK1

(Figure 7a), then since K1 is an interior point of AA1P , the circle c1 would be the
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incircle of AA1P . But AA1P lying inside c makes impossible for its incircle c1 to
be tangent to c; a contradiction by the assumption of the Theorem.
-If instead we assume that A1 is a point of the segment K1P or of PC (Figures

7b,7c), then sinceK1 is an exterior point of AA1P , the circle c1 would be an excircle

of AA1P . But c1 also lies in the half-plane with respect to line BC as A does. So
it touches the half-line PA (in the first case) or the half-line A1A (in the second
case) at a point beyond A, thus exterior to c. So then c1 cannot be tangent to c
internally as the assumption of the Theorem demands; a contradiction. QED

Proof. of Claim 8:
The result is immediate because of Claims 3,6,7.
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