Skill areas to be covered in
conferences
Conference #1  -  March 12
                        1)solving
systems of equations with Gauss 
                                    achieving
Final Form
                                    assigning
arbitrary variables
                                    recognizing
the 3 types of solutions
                        2)matrix
arithmetic
                                    row * column
                                    matrix
* column
                                    matrix *
matrix
            Conference
#2    March 19
                        1) solutions of systems
in vector form
                                    assigning
arbitrary variables (again)
                        2) matrix algebra
                                    working
symbolically with matrices
                                    non-commutativity
                                    inverses and
their algebra           (AB)-1
= B-1A-1 etc
                                    finding
homogeneous solutions to 
problems like
                                                Ax
= 5x  (prelude
to eigenstuff later)
                                    powers
                                    diagonal
matrices
            Conference #3   March 26
1.     
determinants
            compute by criss-cross or  expansion (3x3)
2.   solutions of homogeneous
systems - basis
                        
            Conference
#4   April 2
                        
                        Vector spaces –
                                    proving a
set is a vector space
                                    finding a
counterexample when it isn’t
                                    Problems
from:
                                                geometry
(lines, planes)
                                                matrices
(subsets of 2x2 matrices)
                                                polynomials
                                                solutions
to homogeneous differential equations
                        
            Conference
#5   April 9
linear transformations
                                    algebra of , utilizing the definition
                                    finding the matrix of              
Conference #6   April 16
1) recognizing
eigenvectors & eigenvalues
                                    using the
definition
                        2) computing them as homogeneous solutions
                                    esp case of double roots
                        setting up  P and D matrices
as in  A =P D P-1
            Conference #7   April 23
                        review for final exam