1. Suggested Problems:

 (a) Chapter 3 (Page 61): 2, 4, 5, 6, 8, 10, 15, 16, 17, 18, 19, 22, 23

2. Problems to Submit:

 1) Suppose that E is a metric space and $S \subset E$ is complete. Prove that S is closed.

 2) Using the definition of “convergence of a sequence”, prove

 (a) \(\{a_n\} \) converges to a implies a_n^2 converges to a^2.

 (b) \(\{a_n\} \) converges to a implies $|a_n|$ converges to $|a|$.

 3) Verify that the following are metric spaces

 (a) all n-tuples of real numbers, with

 \[
d((x_1, \ldots, x_n), (y_1, \ldots, y_n)) = \sum_{i=1}^{n} |x_i - y_i|
\]

 (b) all bounded infinite sequences $x = (x_1, x_2, x_3, \ldots)$ of elements of \mathbb{R}, with

 \[
d(x, y) = \sup_i |x_i - y_i|
\]

 4) Prove that the sum of two Cauchy sequences is Cauchy.