exercise 1:
(i). Let θ be a real number. Using double angle formulas, show that $\cos \frac{\theta}{2} + i \sin \frac{\theta}{2}$ is a square root of $\cos \theta + i \sin \theta$.
(ii). Let z be a non zero complex number. Show that z has exactly two square roots.
Hint: As $z = |z| \frac{z}{|z|}$, $z = r(\cos \theta + i \sin \theta)$ for some positive r and some θ in \mathbb{R}.
(iii). Let a and b be in \mathbb{C}. Show that the quadratic equation $z^2 + az + b = 0$ has one or two solutions in \mathbb{C}.

exercise 2:
Let θ be a real number and n a positive integer. Using appropriate trig formulas, show by induction on n that
\[(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta.\]
Is this formula true for all n in \mathbb{Z}?

exercise 3:
From your textbook: 1.3.8, (a) and (b).

exercise 4:
From your textbook: 1.3.13.

exercise 5:
Let V be an F-vector space and S and T be two finite subsets of V which are non empty and such that $S \subset T$.
(i). Show that span(S) is a subspace of span(T).
(ii). If span(S) = V show that span(T) = V.
(iii). If T is an independent set, show that S is an independent set.

exercise 6:
From your textbook: 1.5.2.: a, b, c.

exercise 7:
Let V be an F-vector space and $S = \{v_1, ..., v_n\}$ an independent subset of V. Let v_{n+1} be in V. Show that $T = \{v_1, ..., v_{n+1}\}$ is an independent subset of V if and only if $v_{n+1} \notin$ span (S).
exercise 8:
From your textbook: 1.5.9.

exercise 9:
From your textbook: 1.6.4.

exercise 10:
From your textbook: 1.6.5.

exercise 11:
From your textbook: 1.6.9.

exercise 12:
From your textbook: 1.6.31.

exercise 13:
From your textbook: 1.6.32.