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Abstract

We introduce a new definition of stability, ε-stability, that implies local minimality and is robust enough

for passing from discrete-time to continuous-time quasi-static evolutions, even with very irregular ener-

gies. We use this to give the first existence result for quasi-static crack evolutions that both predicts

crack paths and produces states that are local minimizers at every time, but not necessarily global

minimizers. The key ingredient in our model is the physically reasonable property, absent in global

minimization models, that whenever there is a jump in time from one state to another, there must

be a continuous path from the earlier state to the later along which the energy is almost decreasing.

It follows that these evolutions are much closer to satisfying Griffith’s criterion for crack growth than

are solutions based on global minimization, and initiation is more physical than in global minimization

models.

1. Introduction

Recent mathematical progress on fracture ([9], [5], [6], [8], [4]) is based on an
attempt to turn Griffith’s criterion for crack growth into a well-posed model for
predicting crack paths, at least in the quasi-static case (by “well-posed” we mean
that existence can be shown – “Only a mathematical existence proof can ensure that
the mathematical description of a physical phenomenon is meaningful.” R. Courant,
see [11].) While the basic underlying idea, that crack increments should be optimal
in reducing stored elastic energy, had existed in the engineering community, there
had not been a continuous-time model amenable to mathematical analysis until [9]
(together with refinements introduced in [5]).

There is, however, one main flaw commonly acknowledged in this model: it
rests on global minimization. This results in a non-locality (in space) that is, in
particular, at times inconsistent with Griffith’s criterion for crack growth. Attempts
at addressing this, and extending existence results based on global minimization
to results based instead on local minimization, have met with difficulties, and have
either sacrificed local minimality or the goal of predicting crack paths. Dal Maso
and Toader, in [6], design a procedure that, instead of globally minimizing the total
energy at discrete times (and then passing to the continuous-time limit), follows
certain (approximate) gradient flows to get from one discrete time to the next.
They succeed in the prediction of crack paths, together with a type of minimality
that is close to, but does not imply, local minimality for the continuous-time limit.

On the other hand, in [14, 12], cracks based on local minimality are obtained, but
only by sacrificing the main original goal of predicting crack paths – these papers
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need to specify, a priori, the crack path and are only able to predict the speed with
which the crack moves along that given path. Until now, there have been no results
predicting crack paths for which the displacements are local minimizers but not
necessarily global minimizers.

In this paper we take a somewhat new point of view, focussing on what we call
accessibility and its relationship to stability. The idea is that, when going from
one discrete time to the next, the total energy should be minimized (subject to
whatever changed, e.g., the Dirichlet data, from the earlier discrete time to the
next), but with the restriction that only accessible states are admissible. Viewed in
this way, in global minimization, all states are accessible from all other states, and
for [6], a state v is accessible from a state u if and only if a certain gradient flow
beginning at u approaches v in the long-time limit. Our corresponding notion of
stability is simply that u is stable if and only if there is no lower-energy state that
is accessible from u. So, with global minimality, only global minimizers are stable,
and with the [6] model, only states u for which certain gradient flows that begin at
u stay at u, are stable.

Further, when passing to the continuous-time limit from the discrete-time, we
expect solutions to have a corresponding property of minimality and accessibility
with respect to solutions at previous times. This was missing in [6], where the
continuous-time stability is weaker than the discrete-time version.

The difficulty faced in [6] was that the corresponding definitions of accessible
and stable were too strong to be preserved when passing to continuous-time limits.
That is, if un → u (in the sense of SBV compactness, which we describe below)
and the un are stable, this does not imply that u is stable. Furthermore, if un → u,
vn → v, with each vn accessible from the corresponding un, this does not imply
that v is accessible from u. Note that with global minimality, there is no issue of
accessibility, and the stability of u when un are stable is exactly the point of the
Jump Transfer method we introduced in [8].

If we weaken the idea of gradient flows, and instead consider v to be accessible
from u if there is a continuous path from u to v along which the total energy is
nonincreasing, we see that there is some mathematical difficulty in trying to use
Jump Transfer to conclude that the corresponding notion of stability is maintained
when taking limits. In fact, examples indicate that this stability will not, in general,
be maintained. However, we notice that for an arbitrary ε > 0, if our notion of
accessibility is modified to allow paths for which the total energy never increases
by more than ε, Jump Transfer can be extended to show that the corresponding
definition of stability is maintained when taking limits.

1.1. Griffith’s criterion and current models. Griffith’s criterion for crack growth
states that a crack can only grow if its energy release rate equals the fracture tough-
ness of the material [10]. More precisely, we suppose that there is a prescribed fu-
ture crack path C(s) (a curve) parameterized by arc-length, with crack at time zero
given by C(s0). Each C(s) determines an elastic equilibrium u(s) (subject to some
given boundary loads or Dirichlet data) defined on Ω \ C(s), with stored elastic
energy E(s). We can then define the elastic energy release rate as − d

dsE(s), as E(·)
is decreasing. Griffith’s criterion then states that for a given fracture toughness Gc:

(1) if − d
dsE(s) < Gc, the crack cannot run

(2) if − d
dsE(s) = Gc, the crack can run
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(3) if − d
dsE(s) > Gc, the crack is unstable.

The essence of the Griffith approach is that these conditions, together with the
assumption that the crack is never unstable, determine C as a function of time.

The central idea behind turning this criterion into a method for predicting crack
paths, and not just for determining whether a crack runs along a given path, is the
fact that underlying the criterion is an energy comparison: −∆E vs. Gc∆s. This
led to the [9] approach: first, consider discrete times 0 = t1 < t2 < . . . < tn = T ,
with ti+1 − ti = ∆t, and to find u(ti), C(ti), minimize

(u,C) 7→ E(u,C ∪ C(ti−1)) :=
∫

Ω

W (∇u)dx+GcHN−1(C ∪ C(ti−1))

with u ∈ H1(Ω \ C). Here the elastic energy is given by

Eel(u) :=
∫

Ω

W (∇u)dx.

Minimizing E then reflects Griffith’s criterion: the crack path will grow by ∆s only if
the resulting elastic energy drop is at least Gc∆s. This formulation has the distinct
advantage of using the energy to choose the crack path. Of course, the original
criterion involves only a local comparison: Griffith’s criterion concerns whether, for
infinitesimal ∆s, −∆E ≥ Gc∆s. Not surprisingly, minimizing (globally) E does not
necessarily result in crack growth that satisfies Griffith’s criterion, as we illustrate
below.

Example 1.1 (Long-bar paradox). Consider a rectangular domain Ω with height
1 and length L, with Dirichlet data at the ends such that the elastic equilibrium
u (without a crack) satisfies |∇u| ≡ δ. We see that for δ > 0 arbitrarily small
but fixed, by increasing L, the elastic energy in Ω can be made arbitrarily large.
Therefore, minimizing E would prefer a vertical crack of length 1, resulting in a
stored elastic energy of zero at a cost of only Gc.

But, it is not hard to show that for δ small enough (independent of L), the energy
release rate is small, and in particular, can be made to be less than Gc (see [3] for
a detailed study). Therefore, while globally minimizing E will result in a crack, this
violates Griffith’s criterion.

More precisely we note that if cracks were forced to grow continuously in this
example, then energy would increase initially, which is why such cracks are ruled
out in [3]. It follows that even if small energy increases were allowed, say by an
amount ε, as the crack grew continuously, this crack growth would still be impossible
for ε small enough.

It is therefore natural to attempt a formulation based on local minimality, instead
of global. First, we note that from now on, we will take W (·) := 1

2 | · |
2 (and Gc = 1),

so that the ideas we describe are in the simplest reasonable setting, in the same
spirit that in [8] we introduced Jump Transfer in a simple setting.

In more detail, the definition of globally minimizing quasi-static fracture evolu-
tion is:

(1) (u(0), C(0)) minimizes E (subject to boundary condition g(0))
(2) E(u(t), C(t)) ≤ E(v,K) for all v ∈ H1(Ω \ K), K ⊃ C(t) (subject to

boundary condition g(t))
(3) E(u(t), C(t)) = E(u(0), C(0)) +

∫ t
0

∫
Ω
∇u(s) · ∇ġ(s)dxds,
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where the last item represents energy conservation (see [5]). For a locally minimizing
solution, we expect to have:

(1) (u(0), C(0)) locally minimizes E (subject to boundary condition g(0))
(2) E(u(t), C(t)) ≤ E(v,K) for all v ∈ H1(Ω \K), K ⊃ C(t) “close enough” to

(u(t), C(t)) (subject to boundary condition g(t))
(3) E(u(t2), C(t2)) ≤ E(u(t1), C(t1)) +

∫ t2
t1

∫
Ω
∇u(s) ·∇ġ(s)dxds, for all t1 < t2.

Items (1) and (2) are natural, and item (3) comes from the fact, which we will
examine later, that when a system evolves based on local minimality, it might at
some point be in a local but not global minimum, yet at a later time the system
might gain “access” to the global minimizer, resulting in an energy drop. Therefore,
we only have the one inequality expressed in (3).

There is an immediate problem with adopting this definition of locally-minimizing
quasi-static evolution: globally minimizing evolutions also satisfy it. What prop-
erty is it that locally minimizing evolutions should have, and globally minimizing
solutions do not have? It cannot be that the solution is a local but not a global min-
imizer, since, for example, at some times there might only exist a global minimizer.
Looking at Example 1.1, it is when the solution jumps (in time) that the solution
becomes non-physical and has a Griffith violation. These jumps are non-physical
because global minimization has no regard for how the system got from one state
to the next. If we follow a (continuous) path from the earlier state to the later, and
insist that the energy must be decreasing along that path, then the jump from no
crack to a complete crack in Example 1.1 would be ruled out, unless the applied
strain were large enough and Griffith’s criterion were satisfied. However, as the
example below shows, there is also a problem in implementing this definition of
accessibility.

Example 1.2. Consider Ω to be the square (−1, 1)×(−1, 1) with pre-existing crack
K0 := (−1, 0)×{0}. We suppose that Dirichlet conditions −t along (−1, 1)×{−1}
and t along (−1, 1) × {1} are applied, resulting in an energy release rate at the
origin exceeding Gc for t > tc. We further suppose that the resulting quasi-static
crack runs along [0, 1)× {0}.

We then consider adding a disjoint sequence of circles to K0, centered at (xi, 0),
xi > 0, with radii ri going to zero as xi goes to zero (in particular, we suppose
ri = x2

i ). A straightforward calculation shows that this only increases the energy
release rate at the origin.

The question then is, what should a locally-minimizing quasi-static crack do as t
passes tc? If we insist that the crack can only follow paths of nonincreasing energy,
then it cannot grow along [0, 1)× {0}, since whenever the crack tip leaves a circle,
the total energy increases because there is no singularity in ∇u (see [3] for details).
Yet, the crack cannot be considered stable, since if we consider growing the crack
along the curve y = 2x2, we get the same energy release rate as for growing a
straight crack, but bypass the circles. Of course, this path is not optimal either, as
growing along y = 3/2x2 would result in even lower energy.

Addressing this question is an issue of modeling, and here we take the point of
view that the crack runs along the x-axis until it reaches a certain circle of small
but finite size, and then is considered stable. As we will see below in the discussion
of the mathematics, making this choice is exactly what is necessary to overcome
the difficulties illustrated by this example, as well as those encountered in, e.g., [6].
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1.2. Mathematical Preliminaries. The spaces BV (Ω) and SBV (Ω), Ω ⊂ RN
bounded and Lipschitz, are defined in the usual way, see [2]. We also use the usual
notation, found in [2], for the jump set Su for a BV function u, ν the normal to
the jump set, etc. We set SBVq(Ω) := {v ∈ SBV (Ω) : ∇v ∈ Lq(Ω)}. We say that

un
SBV
⇀ u, or un converges to u in the sense of SBV convergence if

∇un ⇀ ∇u in L1(Ω);

[un]νnHN−1bSun
∗
⇀ [u]νHN−1bSu as measures;

un → u in L1(Ω); and

un
∗
⇀ u in L∞(Ω).

The meaning of boundary conditions is a little unusual in fracture, since one must
allow cracks to form along ∂Ω. Therefore, one can either say that Dirichlet con-
ditions can be ignored on part of ∂Ω at a cost of HN−1 of that part, or we can
consider Ω ⊂⊂ Ω′ for some Ω′, and consider SBV (Ω′), with the constraint Su ⊂ Ω.
For simplicity, we adopt the latter, although we generally will just refer to SBV (Ω)
and Dirichlet data.

Continuity is with respect to the L1 strong topology, as is local minimality,
although in this context these are essentially equivalent to, e.g., L2, or the topology
of SBV convergence.

The measure theoretic boundary of a set A ⊂ Ω, ∂∗A and its reduced boundary
∂∗A, are defined as in [7] and [15]. The t-super level set for a given function u, Et,
is defined by

Et := {x : u(x) > t}.
For simplicity of notation, we usually write Sv ⊂ C for HN−1(Sv \ C) = 0 and

Sv = C for HN−1(Sv4C) = 0 (That is, we identify sets that are equal up to
HN−1-measure zero in these relations). Also, from now on, we will write the usual
E(u,C) instead E(u,C).

2. Epsilon-Slides and Epsilon-Stability

Definition 2.1 (Slides). We say that a continuous map φ : [0, 1]→SBV is a slide
for u ∈ SBV if φ(0) = u, Eφ(τ2) ≤ Eφ(τ1) for all τ1 < τ2, and Eφ(0) > Eφ(1).

Here,
Eφ(τ) := Eel(φ(τ)) +HN−1

(
Cφ(τ)

)
and

Cφ(τ) :=
⋃
s∈Q
s≤τ

Sφ(s).

We will also consider energies corresponding to

CΓ
φ (τ) := Γ ∪

⋃
s∈Q
s≤τ

Sφ(s),

in which case we will refer to a slide with respect to Γ (though, when it seems clear,
we will drop the φ subscript and Γ superscript).

Lemma 2.2. For any slide φ, Cφ satisfies the following properties:
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(1) Cφ is increasing (Cφ(τ1) ⊂ Cφ(τ2) if τ1 < τ2)
(2) Sφ(τ) ⊂ Cφ(τ) for all τ
(3) Cφ is the smallest (in the sense of inclusion) function satisfying the previous

two conditions.

Proof. In fact, it follows from the proof of Lemma 6.6 in [13] that, without any
continuity assumption on φ, if there exists a bounded set function satisfying (1)
and (2), then there exists a countable set D such that Cφ defined by

Cφ(τ) :=
⋃
s∈D
s≤τ

Sφ(s)

satisfies (1)-(3). Here, we can use the continuity of φ to prove the lemma holds
using any countable dense set, for example Q. (1) and (3) are immediate from the
definition, so the only issue is (2), which follows from SBV compactness and the
continuity of φ (see the proof of (3.20) in [8] for details). �

As noted in the introduction, and in particular in Example 1.2, requiring ac-
cessibility to depend on the existence of slides will not work without regularity
assumptions. We therefore introduce the following slides, which we will see allow
us to overcome all mathematical difficulties:

Definition 2.3 (Epsilon-Slides). We say that a continuous map φ : [0, 1]→SBV is
an ε-slide for u ∈ SBV if φ(0) = u,

(2.1) sup
τ1<τ2

[
Eφ(τ2)− Eφ(τ1)

]
< ε,

and Eφ(0) > Eφ(1). A continuous map φ : [0, 1]→SBV is an ε̄-slide for u ∈ SBV
if φ(0) = u,

(2.2) sup
τ1<τ2

[
Eφ(τ2)− Eφ(τ1)

]
≤ ε,

and Eφ(0) > Eφ(1).

Of course, Lemma 2.2 holds for ε and ε̄-slides as well as for slides. We also define
ε slide with respect to Γ as we did for slides.

In what follows, we will further require ε-slides for a given u to respect the
boundary conditions of u (φ(τ) = u on Ω′ \Ω). Also, for simplicity, we will without
loss of generality assume that τ 7→ HN−1(Cφ(τ)) is affine.

Definition 2.4 (Epsilon Stability). u ∈ SBV is ε-stable if it has no ε-slides, and
ε̄-stable if it has no ε̄-slides.

Definition 2.5 (Epsilon-Stable Fracture). (u,C) is an ε-stable fracture if
(1) t 7→ C(t) is monotonic
(2) u(t) = g(t) on ∂Ω \ C(t) for all t ∈ [0, T ]
(3) u(t) is ε-stable (and a local minimizer) with respect to C(t) for every t ∈

[0, T ]
(4) if (u(t), C(t))− 6= (u(t), C(t))+, then there exists an ε̄-slide with respect to

C(t)− from u−(t) to u+(t). Furthermore, E(u+(t), C+(t)) ≤ E(v, Cφ(1))
for every v that is ε-accessible (with ε-slide φ) from u−(t) with respect to
C(t)−. Here,

u(t)− := lim
s→t−

u(s), C(t)− :=
⋃
s<t

C(s), etc.
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(5) for every t1 < t2,

E(u(t2), C(t2))− E(u(t1), C(t1)) ≤
∫ t2

t1

∫
Ω

∇u · ∇ġdxdt.

Remark 2.6. It is immediate that if φ is an ε-slide from u to v, then there exists
δ > 0 such that φ is a (ε− δ)-slide from u to v.

3. The Algorithm

(1) We consider a countable and dense subset I∞ in [0, T ], and, for each
n ∈ N, a subset In = {tn0 = 0 < tn1 < ... < tnn}, such that {In} form
an increasing sequence of nested sets whose union is I∞. We set ∆n :=
supk∈{1,...,n}(tnk − tnk−1). Note that ∆n ↘ 0. As seen in the introduction
we are given boundary data g ∈W 1,∞((0, 1);H1(Ω′))∩L∞((0, 1)×Ω′), so
that at time t, the admissible fields v should satisfy v = g(t) in Ω′ \ Ω.

(2) We define the nth crack set at time tnk , Cn(tnk ), recursively by

Cn(tnk ) := Cn(tnk−1) ∪ Cφnk (1)

with Cn(tn−1) = ∅ and φnk defined as follows. Set vnk to be the minimizer of
Eel(v) over v satisfying v = g(tnk ) on Ω′ \ Ω and Sv ⊂ Cn(tnk−1). We now
choose un(tnk ) and φnk to be a minimizer of

(u, φ) 7→ Eel(u) +HN−1(Cφ(1) \ Cn(tnk−1))

over all functions u that are ε̄-accessible from vnk (with the same Dirichlet
conditions) with φ a corresponding ε̄-slide (φ(τ) = vnk on Ω′ \ Ω). The
existence of such minimizers follows from the SBV compactness theorem
of [1] and the proof of lemma 6.2. It follows quickly that each un(tnk ) is
ε-stable.

(3) The basic idea is to take a diagonal subsequence such that un(t) converges
for each t ∈ I∞, and we call the limit u(t). The limit C(t) is a little bit
more complicated, taking into account discontinuity sets along ε-slides, in
addition to the discontinuity sets of u.

We then claim that the resulting (u,C) is a locally minimizing ε-stable fracture.

Theorem 3.1. Given g ∈W 1,∞((0, 1);H1(Ω′))∩L∞((0, 1)×Ω′) and ε > 0, there
exists an ε-stable quasi-static evolution for g.

The proof follows the above outline. We begin with some preliminary lemmas
on epsilon-slides and stability, their “transferability”, and their relation to local
minimality.

4. Properties of epsilon-stability

We will find the following lemma useful, which gives a characterization of when
an ε or ε̄-slide exists, though for simplicity we state and prove it for ε̄-slides.

Lemma 4.1. There exists an ε̄-slide with respect to Γ from u to v, where Su ⊂ Γ
and u and v are in elastic equilibrium with E(v,Γ ∪ Sv) < E(u,Γ), if and only if
there exists a pair (φ,C) with φ : [0, 1]→ SBV (Ω), C a crack set for φ (i.e., C
satisfies properties 1 and 2 in Lemma 2.2 with respect to φ), φ(0) = u,

(1) τ 7→ HN−1(C(τ)) is continuous,
(2) Sv ⊂ C(1), and
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(3) for all τ ,

Eel(φ(τ)) +HN−1(Γ ∪ C(τ)) ≤ Eel(u) +HN−1(Γ) + ε.

Proof. Again for simplicity we take Γ = ∅. Suppose first that we have an ε̄-slide ψ
from u to v. Then ψ automatically satisfies conditions 2 and 3, but not necessarily
condition 1. We show that we can construct a φ that satisfies condition 1, while
still satisfying the other two. This construction will be in stages.

In the first stage, we simply set φ1(τ) to be the elastic minimizer in SBV (Ω)
subject to the constraint that HN−1(Sφ1(τ) \Cψ(τ)) = 0. It is then immediate that
E(φ1(τ), Cψ(τ)) ≤ Eψ(ψ(τ), Cψ(τ)) for all τ . In particular, both conditions (2) and
(3) are satisfied. We suppose that τ 7→ HN−1(Cψ(τ)) has a jump discontinuity at
τ ′ (without loss of generality, we assume that HN−1(Cψ(τ ′)\Cψ(τ))→ 0 as τ → τ ′

from below, i.e., we have continuity from the left). Define φ2 by φ2(τ) := φ1(2τ)
for τ ≤ 1

2τ
′, and φ2(τ) = φ1(τ) for τ > τ ′. Then we choose a point x ∈ Ω such that

each circle centered at x intersects Cψ(1) on a set of HN−1 measure zero. Choosing
R > 0 such that Ω ⊂ B(x,R), we define φ2(τ) for τ ∈ ( 1

2τ
′, τ ′] to be the minimizer

of Eel over functions with jump set inside

C(τ) := Cψ(τ ′) ∪

( ⋂
s>τ ′

Cψ(s) ∩B
(
x,

2τ − τ ′

τ ′
R
))

.

This removes the jump discontinuity at τ ′, but now we need to check that
condition (3) is still satisfied (condition (2) is unaltered). The only possibility
of a violation of condition (3) is for τ ∈ ( 1

2τ
′, τ ′]. We note that for such τ ,

Eel(φ2(τ)) ≤ Eel(ψ(τ ′)) by the minimality of φ2 since C(τ) ⊃ Cψ(τ ′). We also
have that ψ(τ ′) = lims→τ ′ ψ(s) by continuity of ψ, and so

Eel(ψ(τ ′)) ≤ lim
s→τ ′

Eel(ψ(s)).

By monotonicity of C, we get the inequality

HN−1(Cφ2(τ)) ≤ lim
s↘τ ′

HN−1(Cψ(s))

so that
E(φ2(τ), Cφ2(τ)) ≤ lim

s↘τ ′
E(ψ(s), Cψ(s)),

which implies condition (3). A similar alteration can be done for each jump dis-
continuity of τ 7→ HN−1(Cψ(τ)) (in order of decreasing jump size), resulting in a
φ2 such that τ 7→ HN−1(Cφ2(τ)) is continuous, and φ2 satisfies (2) and (3).

Now we suppose that we have a pair (φ,C) satisfying conditions (1)-(3), and we
assume, without loss of generality, that at each τ , φ(τ) minimizes the elastic energy
over functions in SBV (Ω) with jump set in C(τ). If we can alter φ, creating ψ, so
that τ 7→ E(ψ(τ), C(τ)) is increasing on an interval [0, d] and decreasing on [d, 1],
and ψ still satisfies (1)-(3) and is continuous, then it will be an ε̄-slide.

There are many ways to accomplish this monotonicity, and we outline here a
simple one. Let w ∈ H1

0 (Ω), w 6= 0, and for each τ we will choose γ(τ) ∈ R such
that ψ(τ) := φ(τ) + γ(τ)w has the properties we want. First, a calculation shows
that

(4.3) Eel(ψ(τ)) = Eel(φ(τ)) + γ(τ)2Eel(w).
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Choose d ∈ [0, 1] such that lim sups→dE(φ(s), C(s)) = supE(φ(·), C(·)) and for
each τ choose γ(τ) so that

E(ψ(τ), C(τ)) =


sup
s≤τ

E(φ(s), C(s)) if τ < d

sup
s≥τ

E(φ(s), C(s)) if τ ≥ d.

This ψ is not necessarily continuous, but from its definition and (4.3) it is continuous
wherever both φ and E(φ(·), C(·)) (which we denote by E ◦ φ) are continuous. We
claim also that if E ◦ φ is continuous at some τ ′, then so is φ. To see this, suppose
τn → τ ′ and Eel(φ(τn)) → Eel(φ(τ ′)). Take a convergent subsequence so that
φ(τn)→ φ′ in SBV . Then

Eel(φ′) ≤ lim inf
n→∞

Eel(φ(τn)) = Eel(φ(τ ′))

and S(φ′) ⊂ Cφ(τ ′) by the continuity of HN−1(Cφ(·)) and SBV compactness. By
the minimality of φ(τ ′) and the convexity of Eel, we have φ(τ ′) = φ′. Therefore, φ
is continuous at τ ′.

Next, we note that Eel(φ(·)) is nonincreasing, so it has only a countable number
of (jump) discontinuities. E ◦φ must be continuous from the right, since if τn ↘ τ ′

and φ(τn)→ φ′, we have

Eel(φ′) ≤ lim inf
n→∞

Eel(φ(τn))

and Eel(φ(τ ′)) ≤ Eel(φ′) by the minimality of φ(τ ′), as above. But, since Cφ(τ ′) ⊂
Cφ(τn), we have Eel(φ(τ ′)) ≥ Eel(φ(τn)). So

Eel(φ(τ ′)) = lim inf
n→∞

Eel(φ(τn)).

We now go back and alter φ to remove these discontinuities, without altering
its other properties. For each τ ′ at which there is a jump discontinuity, we insert
a time interval into [0, 1] so that the series of all the lengths of these intervals
is summable. The interval corresponding to τ ′ is of the form [τ ′, τ ′′]. We define
φ1(τ ′) := lims↗τ ′ φ(s) and φ1(τ ′′) := φ(τ ′). Between τ ′ and τ ′′, φ1 is given by the
corresponding convex combination of φ1(τ ′) and φ1(τ ′′). This φ1 is continuous, and
so we create ψ as before, which is now an ε̄-slide. �

We then have the following theorem, from [8], to which we will have to make
some relatively small alterations.

Theorem 4.2 (Jump Transfer). Let Ω ⊂ Ω′, with ∂Ω Lipschitz, and let {un} ⊂
SBV (Ω′) be such that

• S(un) ⊂ Ω;
• |∇un| weakly converges in L1(Ω′); and
• un → u in L1(Ω′),

where u ∈ BV (Ω′) with HN−1(S(u)) < ∞. Then, for every ϕ ∈ SBVq(Ω′), 1 ≤
q < ∞, with HN−1(S(ϕ)) < ∞, there exists a sequence {ϕn} ⊂ SBVq(Ω′) with
ϕn = ϕ on Ω′ \ Ω such that

i) ϕn → ϕ strongly in L1(Ω′);
ii) ∇ϕn → ∇ϕ strongly in Lq(Ω′); and

iii) HN−1
(

[S(ϕn) \ S(un)] \ [S(ϕ) \ S(u)]
)
→ 0.
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To prove lemma 4.4, which is the basis for much of this analysis, we need the
following extension of Jump Transfer.

Remark 4.3. We make a small refinement to the proof of Jump Transfer in [8],
assuming the reader has familiarity with that somewhat lengthy proof and its nota-
tion. The starting point is a sequence {un} of SBV functions that converges, in the
sense of SBV compactness, to u ∈ SBV . For an arbitrary ϕ ∈ SBVq, we construct
ϕn ∈ SBVq in the following way:

(1) ϕn = ϕ outside Tn, a set with O(n) measure, which is a union of cubes
∪iQni that almost covers Su and which comes from a covering argument.
In fact, ϕn = ϕ outside ∪iRni , where each Rni is a thin neighborhood of a
hyperplane inside Qni ;

(2) ϕn = r(ϕ) inside ∪iRni , where r(ϕ) denotes a certain reflection of ϕ. The
point is that the values ϕn takes in Rni come from values ϕ takes in Qni
(and similarly for ∇ϕn).

This construction potentially results in an increase in HN−1(Sϕn\Sun) over HN−1(Sϕ\
Su) as follows. The reflection moves most of Sϕ ∩ Su ∩Qni into ∂∗Enti ∩Q

n
i for an

appropriate level set Enti of un. Precisely, we need to control:
(1’) ∂∗E

n
ti ∩Q

n
i \ Sun (which depends on un and not ϕ);

(2’) potential new jumps created on the boundaries of Qni due to redefining ϕ
inside Rni (which again depends on the cover, and not ϕ);

(3’) Sr(ϕ), the jump set of ϕn coming from the reflection of ϕ inside Qni \Rni .
The proof of Jump Transfer shows that (1’) and (2’) can be made to have arbi-

trarily small HN−1-measure independently of ϕ. Only (3’) depends on the partic-
ular ϕ. What we will want to do below is simultaneously apply the Jump Transfer
construction to (ε-slides) ϕ(τ), τ ∈ [0, 1] so that

(4.4) HN−1(Cϕn(1) ∩ Tn \ Sun) ≤ O(n).

In fact, since Cϕn(τ) = ∪τ′∈D
τ ′≤τ

Sϕn(τ ′) and (1’) and (2’) are independent of τ , the

only issue is controlling (3’) uniformly in τ . This is easily accomplished using the
fact that Cϕ(1) \ Su has zero HN−1bSu density HN−1-a.e. in Su, so that we can
originally choose the cover such that HN−1(Cϕ(1) ∩ Tn \ Su) is arbitrarily small
(this is the same as [8] equation (2.3) 6., with Sϕ replaced by Cϕ(1)).

Lemma 4.4. If un
SBV
⇀ u, vn

SBV
⇀ v, and φ is an ε-slide for u with respect to Sv,

then for n large enough, there exists an ε-slide for un with respect to Svn .

Proof. Let φ be an ε-slide for u with respect to Sv, so that in particular it is also
an (ε − δ)-slide for some δ > 0. Without loss of generality, assume also that each
φ(τ) minimizes the stored elastic energy Eel subject to its boundary conditions and

Sφ(τ) ⊂ C(τ),

where C(τ) := Sv ∪ Cφ(τ). Choose α ∈ R such that, setting w := u+ αv, we have
Sw = Su ∪ Sv up to a set of HN−1-measure zero (see the proof of Lemma 3.1 in
[8]). Note that wn := un +αvn

SBV
⇀ w and Swn ⊂ Sun ∪Svn . From Remark 4.3, we

can apply Jump Transfer simultaneously to φ(τ) for all τ ∈ [0, 1], creating φn(τ)
and a sequence of sets {Tn} such that {φn(τ) 6= φ(τ)} ⊂ Tn, where |Tn| → 0,

(4.5)
∫
Tn

|∇φn(τ)|2 ≤ 2
∫
Tn

|∇φ(τ)|2 ∀τ ∈ [0, 1] by Remark 4.3 (2),
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and

(4.6) HN−1([Cφn(1) \ Swn ] ∩ Tn) ≤ O(n) repeating (4.4).

Then define φ′n(τ) to be the minimizer of Eel over functions with jump sets in
Cn(τ) := Svn ∪Cφn(τ). We can suppose that τ 7→ HN−1(C(τ)) is continuous, using
lemma 4.1.

We now wish to show that φ′n is an ε-slide for un with respect to Svn if n is
large enough, but we will see that a small refinement is still necessary. Again from
Lemma 4.1 it is enough to show that

lim sup
n→∞

[E(φ′n(τ), Cn(τ))− E(un, Cn(0))] ≤ E(φ(τ), C(τ))− E(u,C(0))

uniformly for τ ∈ [0, 1]. Notice first that
(4.7)
HN−1(Cn(τ))−HN−1(Cn(0)) = HN−1(Cn(τ)\Cn(0))

≤ HN−1([Cn(1) \ Sun ] ∩ Tn) +HN−1(C(τ) \ C(0))

≤ O(n) +HN−1(C(τ) \ C(0))

= O(n) +HN−1(C(τ))−HN−1(C(0)),

where O(n) is independent of τ .
Now, we also want to show that

(4.8) lim sup
n→∞

∫
Ω

|∇φ′n(τ)|2 <
∫

Ω

|∇φ(τ)|2 + δ

uniformly in τ . We suppose first that

(4.9) lim sup
n→∞

sup
τ

∫
Tn

|∇φ(τ)|2 < δ/4,

which is a weakened version of equi-integrability since |Tn| → 0. Then using (4.5)
and (4.9) we have ∫

Ω

|∇φn(τ)|2 ≤
∫

Ω

|∇φ(τ)|2 + δ/2 +O(n),

so that, by the minimality of φ′n(τ), we get

(4.10)
∫

Ω

|∇φ′n(τ)|2 ≤
∫

Ω

|∇φ(τ)|2 + δ/2 +O(n)

uniformly in τ , giving (4.8).
Now we need to consider what happens if (4.9) is not satisfied. In this case,

there exists at least one sequence {τn} such that

lim sup
n→∞

∫
Tn

|∇φ(τn)|2 ≥ δ/4

and without loss of generality we can assume that {τn} is monotonic and the above
limit sup is a limit. We now show that such a sequence cannot be decreasing. If
τn ↘ τ , then setting ψ to be the weak limit in SBV of (a subsequence of) φ(τn),
we have ∫

Ω

|∇φ(τ)|2 ≤
∫

Ω

|∇ψ|2 ≤ lim inf
n→∞

∫
Ω

|∇φ(τn)|2 − δ/4,
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where we use the minimality of φ(τ) together with the fact that Sψ ⊂ C(τ) by
SBV compactness, and |Tn| → 0. But∫

Ω

|∇φ(τn)|2 ≤
∫

Ω

|∇φ(τ)|2

for all n ∈ N by the minimality of φ(τn), since C(τ) ⊂ C(τn), a contradiction.
Hence we only need to consider sequences τn ↗ τ for some τ ∈ (0, 1], and we

note as above that for these sequences,

(4.11)
∫

Ω

|∇φ(τ)|2 ≤ lim inf
n→∞

∫
Ω

|∇φ(τn)|2 − δ/4.

Since the stored elastic energy can only decrease as C grows, it follows that there
can only be a finite set D of τ at which there is such an energy drop.

The idea for proving (4.8) under these conditions is as follows. These energy
drops (which are due to energy concentrations within Tn) occur over arbitrarily
small increases in C(τ). Hence, if τ ∈ D with τn ↗ τ satisfying (4.11), and we had
added C(τ) \C(τn) earlier, at or before time τn, we would have φ(τn) = φ(τ), and
so an upper bound for the energy of φ′n(τn) would be the energy of φ′n(τ).

Specifically, for each τi ∈ D, we choose τ ′i < τi such that HN−1(C(τi) \C(τ ′i)) <
δ

4(#D) , where #D is the number of elements in D. Then set

C∗n(τ) := ∪i
(
C(τi) \ C(τ ′i)

)
∪ Cn(τ).

By (4.7) and the choice of the τ ′i , we have that

lim
n→∞

(
HN−1(C∗n(τ))−HN−1(C∗n(0))

)
≤ HN−1(C(τ))−HN−1(C(0)) + δ/4

uniformly in τ .
We now set φ∗n(τ) to be the elastic minimizer subject to its jump set being a

subset of C∗n(τ). Then

(4.12) lim sup
n→∞

sup
τ∈[0,1]\∪i[τ ′i ,τi]

∫
Tn

|∇φ(τ)|2 < δ/4,

and so for τ ∈ [0, 1] \ ∪i[τ ′i , τi), we have (4.10) just as before (indeed, the elastic
energy can now only be lower). Given i and τ ∈ [τ ′i , τi), we have∫

Ω

|∇φ∗n(τ)|2 ≤
∫

Ω

|∇φn(τi)|2 ≤
∫

Ω

|∇φ(τi)|2 + δ/2

as in 4.9. Hence, φ∗n is an ε-slide for un, for n sufficiently large.
�

Lemma 4.5. If un → u with un ε-stable for some ε > 0, then

Eel(u) = lim
n→∞

Eel(un).

Proof. We suppose that

Eel(u) + δ ≤ lim
n→∞

Eel(un)

for some δ > 0. Then applying Theorem 4.2 with φ = u, we get φn such that

HN−1(Sφn \ Sun) < min{ε/2, δ}
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and
lim
n→∞

Eel(φn) = Eel(u).

But then, just as in the proof of Lemma 4.6, for n large enough we can find an
ε-slide from un to φn, contradicting the ε-stability of un. �

We now consider the relation between epsilon stability and local minimality.

Lemma 4.6. If u is ε-stable with respect to some Γ, then it is a (unilateral with
respect to Γ) local minimizer.

Proof. For simplicity, we take Γ = ∅, with only very minor changes in the proof.
We note first that if u is ε-stable, then it is minimal for its discontinuity set. We
suppose that u is not a local minimizer, and show that we can build an ε-slide for
u, contradicting the stability of u. If u is not a local minimizer, then there exists a
sequence {un} in SBV such that ‖u− un‖ < 1

n and

Eel(un)dx+HN−1(S(un) \ S(u)) < Eel(u)dx.
By the lower semicontinuity of the bulk energy, it follows that

lim
n→∞

[
Eel(un)dx+HN−1(S(un) \ S(u))

]
= Eel(u)dx

and HN−1(S(un)\S(u)) → 0. We choose n ∈ N such that HN−1(S(un)\S(u)) < ε
and now construct an ε-slide from u to un. Choose a point x ∈ Ω such that each
circle centered at x intersects S(un) on a set of HN−1 measure zero. We define φ(τ)
to be the minimizer of the elastic energy over SBV functions with jump set inside
S(u)∪

(
S(un)∩B(x, τ)

)
. This function φ satisfies the energy inequality necessary

for ε-slides since the elastic energy cannot increase and the crack energy increases
by less than ε. Then, by Lemma 4.1, since

τ 7→ HN−1
(
S(u) ∪

[
S(un) ∩B(x, τ)

])
is continuous by the choice of x, there is an ε-slide from u.

�

In fact, it is quite quick to prove that strict local minimizers are ε-stable for
ε small enough, since for such a u, minimizing the total energy on the boundary
of a small enough ball in L1 (for which we have strong compactness due to SBV
compactness) results in an energy strictly larger than that of u. So, u is ε-stable
for ε smaller than the difference in energy between that minimum, and that of u.

5. Definition and properties of (u,C)

In this section, we normalize the ε-slides from tni to tni+1 by HN−1(Cn(tni+1) \
Cn(tni )), with uniform Lipschitz constant. The resulting functions we refer to as
Un(τ), and each τ 7→ HN−1(Cn(τ)) is uniformly Lipschitz. More precisely, recalling
that HN−1(Cφni (·)) are affine, we first extend each Cn, which so far is defined only
on In, by

Cn(t) := Cn(tni ) ∪ Cφni

(
t− tni

tni+1 − tni

)
for t ∈ (tni , t

n
i+1), and we similarly extend un: for t ∈ (tni , t

n
i+1)

un(t) := φni

(
t− tni

tni+1 − tni

)
.
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Then set
fn(t) := t+HN−1(Cn(t)),

which has an inverse on [0, T + HN−1(Cn(T ))] since each fn is continuous and
strictly increasing. We define

Un(τ) := un(f−1
n (τ))

and
Cn(τ) := Cn(f−1

n (τ)) = CUn(τ).

First, define u on I∞ by un(t) SBV
⇀ u(t) for every t ∈ I∞ (choosing a diagonal

subsequence as necessary). Since the fn are each monotonic, we then take a further
subsequence and choose f such that fn → f a.e., including on I∞, with f mono-
tonic. Set T := f(I∞) and choose a countable dense set D ⊂ [0, f(T )]\T , a function
U on T ∪D, and a further subsequence such that Un(τ) := un(f−1

n (τ))→ U(τ) on
D, Un(fn(t)) → U(f(t)) for t ∈ I∞. It follows that u(t) = U(f(t)) for all t ∈ I∞.
We then extend U to [0, f(T )] by continuity from below (the fact that this uniquely
defines U is explained below). This U then defines C := CU . In turn, we define
C(t) := CU (f(t−)).

We note that f is increasing and can have jump discontinuities. We can consider
f to be set-valued, with f(t) the closed interval [f(t−), f(t+)]. We then define
F (t) := t+HN−1(C(t)).

In formulations based on global minimization, one can normally show that

(5.13) HN−1(C(t)) = lim
n→∞

HN−1(Cn(t))

basically because any increase, at the discrete level, ofHN−1(Cn(t)) must be exactly
offset by a reduction in the elastic energy, and we can easily keep track of changes
in the elastic energy. It follows that

HN−1
(
C(t2) \ C(t1)

)
= lim
n→∞

HN−1
(
Cn(t2) \ Cn(t1)

)
,

which is key to the energy equality. Here, we need a different argument than the
usual one, when there are jumps in time. The reason is that in this setting, energy
drops might occur when there are jumps, because the jumped-to state may not
have been accessible earlier, a fact that rules out the usual arguments. So, we will
need the following.

Lemma 5.1. Suppose f(t) is a nontrivial interval, and set τ1 := min f(t), τ2 :=
max f(t). Then

HN−1(C(τ2) \ C(τ1)) = lim
n→∞

HN−1(Cn(tnj ) \ Cn(tni ))

where tni , t
n
j ∈ In, fn(tni )→ τ1, fn(tnj )→ τ2.

Proof. Note first that since τ1, τ2 are endpoints of f(t), they are elements of T , so
that such tni , t

n
j exist. To simplify, we assume that there are {tni } and {tni+1} such

that fn(tni ) → τ1 and fn(tni+1) → τ2, noting that for the general case, we require
a straightforward concatenation. Let φn be ε̄-slides from vn(tni+1) to un(tni+1) such
that

HN−1(Cn(tni+1) \ Cn(tni )) = HN−1(Cφn(1) \ Cn(tni )).

Without loss of generality, we assume that the maps τ 7→ HN−1(Cφn(τ)) are uni-

formly Lipschitz. For a subsequence, φn(τ) SBV
⇀ φ(τ) just as with Un above, and
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in particular, limn→∞HN−1(Cφn(τ)) exists for every τ. We suppose for the sake of
contradiction that

0 < lim
n→∞

HN−1
(
Cφn(1) \ Cφn(0)

)
−HN−1

(
Cφ(1) \ Cφ(0)

)
=: δ.

We have that
lim
n→∞

[fn(tni+1)− fn(tni )] =: γ > 0.

We then claim that, for n large enough, φn is not an optimal slide for vn(tni+1).
The plan is to transfer part of the path φ to φn, creating a new ε̄-slide that has
lower energy than φn.

First, define d : [0, 1]→ [0,∞) (the drop in energy) by

lim
n→∞

HN−1(Cφn(τ) \ Cφn(0))−HN−1(Cφ(τ) \ C(τ1)).

Note that d satisfies

(5.14) d(τ + ∆τ) ≤ d(τ) + c∆τ

for ∆τ > 0 since

HN−1(Cn(τ + ∆τ)) ≤ HN−1(Cn(τ)) + c∆τ

(from the Lipschitz property ofHN−1(Cn(·))) andHN−1(C(τ+∆τ)) ≥ HN−1(C(τ)).
Now set

τ ′ := sup{τ : d(τ) ≤ δ/2}.
We claim that d(τ ′) = δ/2. If d(τ ′) > δ/2, then we violate (5.14). If d(τ ′) < δ/2,
then again using (5.14) we have d(τ ′ + ∆τ) < δ/2 for ∆τ > 0 small enough,
contradicting the definition of τ ′.

We then have that for τ ∈ [τ ′, 1], E(φ(τ), Cφ(τ)) < E(φ(0), Cφ(0)) + γ − δ/2,
since E(φn(τ), Cφn(τ)) ≤ E(φ(τ), Cφ(τ)) + γ. Proceeding as in Lemma 4.4, we
transfer the slide φ : [τ ′, 1]→SBV from φ(τ ′) to φn(τ ′). This produces an ε̄-slide
φ̄n with lower energy at τ = 1 than the original φn, contradicting the minimality
of φn.

�

Lemma 5.2. Each u(t) is ε-stable with respect to C(t), for all t ∈ I∞.

Proof. Suppose that u(t) does not have this stability. Then there exists v ∈ SBV
and an ε-slide φ with respect to C(t) from u(t) to v. In particular, φ is also an
(ε−δ)-slide, for some δ > 0. We have that u(t) := limn→∞ un(t), and we know that
each un(t) is ε-stable with respect to Cn(t). Choose a finite collection {τi} ⊂ T ∪D
with each τi ≤ f(t), such that

(5.15) HN−1(C(t) \ ∪iSU(τi)) < δ,

where τI is the largest τi in the finite collection. As in the proof of Lemma 3.1 in [8],
we can choose αi ∈ R such that for w :=

∑
αiU(τi), we have Sw = ∪iSU(τi). We

then have that φ is an ε-slide for u(t) with respect to Sw. Setting wn :=
∑
αiUn(τi),

we have wn
SBV
⇀ w. But then, by Lemma 4.4, there exists an ε-slide φn with

respect to Swn , for un(t), and so these φn are also ε-slides for un(t) with respect to
Cn(t), since Swn ⊂ Cn(t). This contradicts the ε-stability of un(t) with respect to
Cn(t). �
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Lemma 5.3. If tn ∈ In with tn → t, and f, F are continuous at t, then for
τn = fn(tn) → f(t) = τ , we have that, if Un(τn) SBV

⇀ z, then z is ε-stable with
respect to C(t).

Proof. Suppose that z does not have this stability. Then there exists v ∈ SBV and
an ε-slide φ with respect to C(τ) from z to v. In particular, φ is also an (ε − δ)-
slide, for some δ > 0. We have that z := limn→∞ Un(τn), and we know that each
Un(τn) is ε-stable with respect to Cn(τn). Choose t′ < t such that t′ ∈ I∞ and
F (t)− F (t′) < δ/2, and choose a finite collection {τ i} ⊂ [0, f(t′)] ∩D such that

(5.16) HN−1(C(f(t′)) \ ∪iSU(τ i)) < δ/2.

As in the proof of Lemma 3.1 in [8], we can choose αi ∈ R such that for w :=∑
αiU(τ i), we have Sw = ∪iSU(τi). Setting wn :=

∑
αiUn(τi), we have wn

SBV
⇀ w.

We then have that φ is an ε-slide for z with respect to Sw, and so there exist
ε slides φn for Un(τn) with respect to Swn for n sufficiently large. Since Swn ⊂
Cn(τn) for n sufficiently large, these φn are also ε-slides with respect to Cn(τn), a
contradiction.

�

Remark 5.4. The same argument shows that Un
SBV
⇀ U a.e. as follows. Let τ be

a continuity point of f, F and let w be such that Un(τ) SBV⇀ w (for a subsequence).
The aim is to show that w = U(τ) (defined to be the limit from below of U on the
dense, countable set used in first defining U). By the above proof, w is ε-stable with
respect to C(τ), but so is U(τ), since it is the limit of U(τn), τn ↗ τ , and these
functions are also ε-stable stable with respect to C(τn). Since τ is a continuity point
of f , HN−1(C(τ) \ C(τn)) → 0. The same argument shows also that (u(t), C(t))−

exists, as does (u(t), C(t))+.

Lemma 5.5. Each u(t) is ε-stable with respect to C(t), for t /∈ I∞.

Proof. Just as above, we suppose that u(t) does not have this stability. Then
there exists an ε-slide φ with respect to C(t) from u(t). In particular, φ is also an
(ε− δ)-slide, for δ > 0 sufficiently small. By definition,

C(t) =
⋃

τi∈D(t)

SU(τi)

with D(t) := [0, f(t−)]∩ (D∪T ). By the definition of f(t−), we can choose t′ ∈ I∞
with t′ ≤ t such that HN−1(C(t) \ C(t′)) < δ

4 . Then, φ is an (ε− δ
4 )-slide for u(t)

with respect to C(t′). We next claim that φ̄ defined by

φ̄(τ) := φ(τ) + g(t′)− g(t)

is an ε-slide for u(t′) with respect to C(t′), for δ small enough, contradicting the
stability of u(t′).

We have
1
2

∫
Ω

|∇φ̄(τ)|2 =
1
2

∫
Ω

|∇φ(τ)|2 +
∫

Ω

∇φ(τ) · ∇[g(t′)− g(t)] +
1
2

∫
Ω

|∇[g(t′)− g(t)]|2,

so that we can get
1
2

∫
Ω

|∇φ̄(τ)|2 < 1
2

∫
Ω

|∇φ(τ)|2 +
δ

2
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since∣∣∣∣∫
Ω

∇φ(τ) · ∇[g(t′)− g(t)] +
1
2

∫
Ω

|∇[g(t′)− g(t)]|2
∣∣∣∣

≤ ‖∇φ(τ)‖‖∇[g(t′)− g(t)]‖+
1
2
‖∇[g(t′)− g(t)]‖2,

which is less than δ
2 if t′ is close enough to t so that

‖∇[g(t′)− g(t)]‖ < min
{

δ

2(‖∇u(t)‖+ 1)
, 1
}
.

Therefore, φ̄ is an ε-slide for u(t′) with respect to C(t′) if Eφ̄(φ̄(1)) < E(u(t′), C(t′)).
But, just as above we also have that

1
2

∫
Ω

|∇u(t′)|2 ≥ 1
2

∫
Ω

|∇u(t)|2 +
∫

Ω

∇u(t′) · ∇[g(t′)− g(t)] ≥ 1
2

∫
Ω

|∇u(t)|2 − δ

2
.

Hence,

E(u(t′), C(t′))− Eφ̄(φ̄(1)) ≥ Eel(u(t))− δ

2
− Eel(φ̄(1))−HN−1([C(t) ∪ Cφ(1)] \ C(t′))

≥ Eel(u(t))− δ

2
− Eel(φ(1))− δ

4
−HN−1(Cφ(1) \ C(t))

−HN−1(C(t) \ C(t′))

≥ E(u(t))− Eφ(1)− δ

2
− δ

4
− δ

4
> 0

if δ is originally chosen less than E(u(t), C(t))− Eφ(1). �

Lemma 5.6. ∇un(tn) → ∇u(t) strongly in L2(Ω) if tn → t and HN−1(C(·)) is
continuous at t.

Proof. We first note, from lemmas 5.2 and 5.5, that each u(t) is ε-stable with respect
to C(t). Let v be the weak limit of a subsequence of un(tn). We claim that this v
must be u(t), and the convergence is strong (i.e, ∇un(tn) → ∇u(t) in L2(Ω)). To
show that v must be u(t), it is enough to show that v is ε-stable with respect to
C(t), and therefore the minimizer of the Dirichlet energy, over functions with jump
set in C(t).

Suppose it isn’t. Then there exists w ∈ SBV and an ε-slide with respect to C(t)
from v to w. Repeating the proof of Lemma 5.2 with un(tn) replacing un(t) and
using the continuity of C(t), we contradict the ε-stability of un(tn). The strong
convergence then follows from Lemma 4.5. �

6. Energy inequality and accessibility of jumps

Lemma 6.1. For (u,C) defined as above, we have that for every t1 ≤ t2,

(6.17) E(u(t2), C(t2)) ≤ E(u(t1), C(t1)) +
∫ t2

t1

∫
Ω

∇u · ∇ġdxdt.

Furthermore, if t 7→ HN−1(C(t)) has only jumps of size less than ε between t1
and t2, then the above inequality is an equality.
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Proof. We first note that for each n ∈ N, the number of times tni ∈ Tn such that
HN−1(Cn(tni+1) \ Cn(tni )) ≥ ε is bounded, uniformly in n since the total energy is
bounded. Taking a further subsequence if necessary, these sets of times converge
as n→∞ to some finite set J .

Let t1 < t2 be given such that [t1, t2]∩J = ∅. As usual, the method is to prove a
discrete version of the theorem for un(ti), and then pass to the limit n→∞. The
discrete inequality comes from summing

E(un(tni+1), Cn(tni+1)) ≤E(un(tni ), Cn(tni )) +
∫

Ω

∇un(tni ) ·
(
∇g(tni+1)−∇g(tni )

)
+

1
2

∫
Ω

|∇g(tni+1)−∇g(tni )|2,

which follows from the ε̄-accessibility of un(tni ) + g(tni+1) − g(tni ) from vn(tni+1),
together with the ε̄-stability of un(tni+1), for tni+1 − tni small enough. Note that the
corresponding inequality in the opposite direction,

E(un(tni+1), Cn(tni+1)) ≥E(un(tni ), Cn(tni )) +
∫

Ω

∇un(tni ) ·
(
∇g(tni+1)−∇g(tni )

)
− 1

2

∫
Ω

|∇g(tni+1)−∇g(tni )|2,

is only guaranteed to hold since the increment in Cn is less than ε, so that un(tni+1)−
g(tni+1) + g(tni ) is ε̄-accessible from un(tni ).

We now iterate these inequalities from i = B(n) to F (n), where tnB(n) is the
closest time, in the nth discretization, to t1, and similarly for F (n) and t2, to
obtain first

E(un(tnF (n)),Cn(tnF (n))) ≤ E(un(tnB(n)), Cn(tnB(n)))

+
F (n)−1∑
i=B(n)

∫
Ω

[
∇un(tni ) · ∇

(
g(tni+1)− g(tni )

)
+

1
2

∣∣∣∇(g(tni+1)− g(tni )
)∣∣∣2 ].(6.18)

This sum can then be rewritten:∫ tnF (n)

tn
B(n)

∫
Ω

[
∇ūn(t) · ∇ ˙̄gn(t) +

1
2
|∇ ˙̄gn(t)|2

]
dxdt,

where ḡn is the piecewise-affine extension of gn restricted to Tn, and ūn is the
piecewise-constant extension of un restricted to Tn. By Lemma 5.6, ∇ūn(t) →
∇u(t) strongly in L2 for a.e. t. Since g ∈ C1(0, T ), we also have that ∇ ˙̄gn(t) →
∇ġ(t) strongly in L2 for every t. By the bounds on ∇ ˙̄gn(t) and ∇ūn(t), the bounded
convergence theorem gives∫ tnF (n)

tn
B(n)

∫
Ω

[
∇ūn(t) · ∇ ˙̄gn(t) +

1
2
|∇ ˙̄gn(t)|2

]
dxdt→

∫ t2

t1

∫
Ω

∇u(t) · ∇ġ(t)dxdt.

In addition, the strong convergence in L2 of∇un(tnBn) to∇u(t1) implies Eel(un(tnBn))→
Eel(t1) (and similarly for t2). Hence

Eel(u(t2)) + lim
n→∞

HN−1(Cn(t2) \ Cn(t1)) ≤Eel(u(t1))

+
∫ t2

t1

∫
Ω

∇u(t) · ∇ġ(t)dxdt.(6.19)
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Using the other inequality and a similar argument, we get

Eel(u(t2)) + lim
n→∞

HN−1(Cn(t2) \ Cn(t1)) ≥Eel(u(t1))

+
∫ t2

t1

∫
Ω

∇u(t) · ∇ġ(t)dxdt.(6.20)

Suppose first the 0 /∈ J . Then, taking t1 = 0, we note that HN−1(C(t1)) =
HN−1(Cn(t1)), and so for any t ∈ [0, t2], we get from the above inequalities together
with the proof of Lemma 3.6 in [8], that

E(u(t), C(t)) = E(u(0), C(0)) +
∫ t2

t1

∫
Ω

∇u(t) · ∇ġ(t)dxdt,

which further implies that HN−1(C(t)) = limn→∞HN−1(Cn(t)). At the first point
p ∈ J , it follows from lemma 5.1 to that HN−1(C(p+)) = limn→∞HN−1(Cn(p+)).
Repeating these arguments gives

HN−1(C(t)) = lim
n→∞

HN−1(Cn(t))

for all t ∈ [0, T ], as well as (6.1).
�

Finally, we have the following accessibility and optimality:

Lemma 6.2. If u−(t) := lim
s→t−

u(s) 6= u+(t) := lim
s→t+

u(s), then there exists an ε̄-

slide from u−(t) to u+(t) with respect to C−(t). Furthermore, E(u+(t), C+(t)) ≤
E(v, C−(t) ∪ Cψ(1)) for all v ∈ SBV that are ε-accessible from u−(t) with respect
to C−(t) (with ψ an ε-slide for v).

Proof. We first set φ(τ) := U(τ − min f(t)) for τ ∈ [0, τ ′] and τ ′ := max f(t) −
min f(t), and show that it has the properties that, according to Lemma 4.1, imply
the existence of an ε̄-slide from u(t−) to u(t+). We choose tnl(n) such that fn(tnl(n))→
f(t−), and similarly choose tnu(n) for f(t+). Then set

φn(τ) := Un

(
fn(tnl(n)) + τ(fn(tnu(n))− fn(tnl(n)))

)
so we now have that

(6.21)

φ(0) = u−(t)

φ(τ ′) = u+(t)

Eel(φ(τ)) ≤ lim inf
n→∞

Eel(φn(τ))

HN−1(Cφ(τ)) = lim inf
n→∞

HN−1(Cφn(τ))

for τ ∈ [0, τ ′], where the inequality follows from lower semicontinuity. Now, lemma
4.1 implies that there exists an ε̄-slide from u−(t) to u+(t).

Finally, we note that the optimality of u(t+) follows just as in the proof that
u(t) is ε-stable. �
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