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Abstract. The mathematical analysis developed for energy minimizing frac-

ture evolutions has been difficult to extend to locally minimizing evolutions.

The reasons for this difficulty are not obvious, and our goal in this paper is
to describe in some detail what precisely the issues are and why the previous

analysis in fact cannot be extended to the most natural models based on local

minimality. We also indicate how the previous methods can be modified for
the analysis of models based on a recent definition of stability that is a bit

stronger than local minimality.

1. Introduction. Inspired by Griffith’s criterion for crack growth ([14]), there has
been substantial mathematical progress on global energy-minimization models for
crack prediction in which the energy of a crack is proportional to its surface area
[13, 9, 12, 7, 8]. However, Griffith’s criterion is explicitly local, and while formulating
local energy-minimization models for crack prediction can be done, the analysis
that has been developed for the global minimization setting does not extend in a
straightforward way to local minimization.

More precisely, the issue is combining a certain notion of unilateral with global
and local minimality. This unilateral minimality comes from the fact that the
models treat fracture as irreversible, meaning that while there is an energy cost for
the creation of cracks, modeled as discontinuities of the displacement, there is no
energy reduction if at some later time a discontinuity disappears. Hence, the only
minimality property that a displacement u can have relative to other displacements
v is

Eel(u) ≤ Eel(v) +HN−1(Sv \ C), (1)
where u and v are in SBV (Ω), Eel is stored elastic energy, Sv is the discontinuity
set, or jump set, of v, HN−1 is the N − 1-dimensional Hausdorff measure, C is the
crack set, and Su ⊂ C (see [4] for definitions of SBV and jump sets). We note
that for simplicity in highlighting some of the issues that we discuss below, we will
sometimes suppose that Su = C. The unilateral minimality is then

Eel(u) ≤ Eel(v) +HN−1(Sv \ Su).

Of course, the issue of global vs. local minimality then concerns the class of v
for which the above inequality holds – for global minimality, it holds for all v
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(constrained, e.g., to the appropriate Dirichlet condition), and for local minimality,
it holds for all v close enough to u, constrained as above.

For quasi-static evolutions, we seek a pair (u(t), C(t)), t ∈ [0, T ], such that u(t)
satisfies a given Dirichlet boundary condition f(t), and such that, among other
things, the above unilateral minimality (1) holds for u(t), with crack set C(t).
Following [2] and [13], the usual strategy is to consider (nested) sets of discrete
times {tni } ⊂ {t

n+1
i } ⊂ [0, T ] such that tn0 = 0, tnn = T , and max(tni+1 − tni ) → 0 as

n→∞. One defines un(tni ) recursively by minimizing

v 7→ Eel(v) +HN−1(Sv \ Cn(tni−1)),

over v ∈ SBV (Ω), v = f(tni ) on ∂Ω, where Cn(tni−1) :=
⋃
j<i Sun(tnj ). The fact

that these minimizers exist follows from [1]. Then, the basic idea is to consider the
countable dense set D ⊂ [0, T ] that is the union of all the discrete times, and then
for t ∈ D, take the limit of un(t) as n → ∞, again using [1]. This gives u(t) for
t ∈ D, and then C is defined for all t by

C(t) :=
⋃
τ≤t
τ∈D

Su(τ).

u is extended to [0, T ], either by taking limits, or by minimizing the elastic energy
over v ∈ SBV with Sv ⊂ C(t) (and the correct Dirichlet condition).

It then remains to show that for every t, u(t) has the desired minimality (1),
with crack set C(t). This has been the main difficulty and indeed the main reason
for assuming the crack path a priori, or restrictions on the crack path. In a nutshell,
the problem is to conclude that if un

SBV
⇀ u (see definition 1.1 below) and the un

are unilateral minimizers, then so is u. The main point of [12] was to prove this
minimality of limits, which is the essence of the Jump Transfer theorem, described
below.

However, while this method handles global minimality, addressing local minimal-
ity is much more subtle. Indeed, the conclusion that u is a unilateral local minimizer
if un are and un

SBV
⇀ u is false (see section 3). Of course, this is only an issue when

trying to predict the crack path, and there are a number of interesting papers that
study crack propagation with an a priori path (e.g., [15, 18]) or a weakening of local
minimality ([10]).

The main point of this paper is to explain this, as well as precisely how the Jump
Transfer argument fails. In addition, we also describe a new stability condition
defined in [16], and how Jump Transfer can be strengthened (see Path Transfer,
section 5 below) to prove that u is stable if un are and un

SBV
⇀ u.

We now define the space SBVp and the main convergence, SBV convergence,
that is central in the analysis of these fracture problems (see [1]).

Definition 1.1. We set SBVp(Ω) := {v ∈ SBV (Ω) : ∇v ∈ Lp(Ω)}. We say that

un
SBV
⇀ u, or un converges to u in the sense of SBV convergence, if un, u ∈ SBV (Ω)

and 

∇un ⇀ ∇u in L1(Ω);

[un]νnHN−1bSun
∗
⇀ [u]νHN−1bSu as measures;

un → u in L1(Ω); and

un
∗
⇀ u in L∞(Ω).
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We remark that while the space SBD (see [3, 5]) is natural for linearized elastic-
ity, there is currently no Jump Transfer theorem for that space, essentially because
there is no (known) analog of the coarea formula. Consequently, at this time, there
are no crack path predicting results for quasi-static fracture in SBD.

2. The mathematical method: Jump Transfer. As explained in the introduc-
tion, the unilateral minimality that we seek is

Eel(u) ≤ Eel(v) +HN−1(Sv \ Su)
for all v ∈ SBV (Ω), where u is the limit in SBV of a sequence un having this
unilateral minimality (with HN−1(Sv \ Sun) instead of HN−1(Sv \ Su), of course).
Generally this elastic energy is of the form Eel(u) =

∫
Ω
W (∇u)dx and lower semi-

continuous with respect to SBV convergence. The standard approach is to take a
sequence of un that have this property, by construction, take a subsequence converg-
ing to some u ∈ SBV (Ω), and seek to show that therefore u satisfies this minimality.
Jump Transfer is the tool for showing this ([12]).

The argument is the following. We assume the simplified unilateral minimality
of un,

Eel(un) ≤ Eel(v) +HN−1(Sv \ Sun)
and seek to show

Eel(u) ≤ Eel(v) +HN−1(Sv \ Su)
for the same class of v (e.g., with a specified Dirichlet condition). As mentioned,
we have Eel(u) ≤ lim infn→∞Eel(un), so the issue (seemingly) is only whether

lim
n→∞

HN−1(Sv \ Sun) ≤ HN−1(Sv \ Su).

In fact, in general this is false, as, e.g., it might be that Sv ⊂ Su, so the right
hand side above is zero, while the left hand side is positive. The essence of Jump
Transfer is to alter any such v, creating vn, that makes a small change in Eel, while
“transferring” the part of Sv that is inside Su into Sun . We then get vn such that
Eel(vn)→ Eel(v) while

lim
n→∞

HN−1(Svn \ Sun) ≤ HN−1(Sv \ Su),

which gives the unilateral minimality of u.
We now state and sketch the proof of Jump Transfer. We give the theorem as

originally formulated in [12], and note that the inclusion Ω ⊂ Ω′ is just a device
for combining Dirichlet conditions with fracture. The issue is that fracture might
occur along the boundary of the domain, so that the Dirichlet data might not be
met. A simple way for handling this is to consider a larger domain Ω′ ⊃⊃ Ω, so
that the Dirichlet condition is met on Ω′ \ Ω, and fracture can occur only in Ω.

Theorem 2.1 (Jump Transfer). Let Ω ⊂ Ω′, with ∂Ω Lipschitz, and let {un} ⊂
SBV (Ω′) be such that
• Sun ⊂ Ω;
• |∇un| weakly converges in L1(Ω′); and
• un → u in L1(Ω′),

where u ∈ BV (Ω′) with HN−1(Su) < ∞. Then, for every v ∈ SBVp(Ω′), 1 ≤ p <
∞, with HN−1(Sv) <∞, there exists a sequence {vn} ⊂ SBVp(Ω′) with vn = v on
Ω′ \ Ω such that

i) vn → v strongly in L1(Ω′);



4 CHRISTOPHER J. LARSEN

Figure 1: Jump Transfer
Left: Su (center line) and Sun ; Center: Su and ∂∗E

n
t ; Right: defining vn

ii) ∇vn → ∇v strongly in Lp(Ω′); and
iii) HN−1

(
[Svn \ Sun ] \ [Sv \ Su]

)
→ 0.

In order to explain the limitations in applying this to local minimization, we first
briefly describe the proof. The idea is to localize to cubes Q covering Su, in which
Q ∩ Su is very close to a hyperplane (the center line in the left panel of Figure 1).
Then, due to un

SBV
⇀ u, we have that for n large, Sun (the broken curve in the left

panel) is close to Su in Q.
The goal is then, for a given v ∈ SBV as in the theorem, to create vn ∈ SBV by

redefining v in the union of these cubes such that Sv ∩ Su is moved, or transferred,
to Sun . Now, if Sun , which might have gaps as illustrated in the left panel, could be
completed, as in the center panel, then it is a relatively simple matter to redefine
v, creating vn, so that each vn has the part of it’s jump set in Su moved to Sun
– either, as was done in [12], by reflecting v from the bottom white region in the
right panel of Figure 1 into the dark region “below” Sun , and reflecting v from the
upper white region into the the light region “above” Sun . Of course, this is not the
only way to redefine v in these regions, and depending on the problem, other ways
might be preferable. For example, in [8], dilations were used in order to maintain
a determinant constraint on ∇v. The key is just to extend v into the dark region
from below, and into the light region from above, so that the jump set of v that
was in Su is now inside Sun .

The main difficulty, however, is that Sun might have gaps, as in the left panel.
The central idea in Jump Transfer is that there exists a t ∈ R such that, setting
Ent := {x : un(x) > t}, we have HN−1(Q ∩ ∂∗Ent \ Sun) is small, where ∂∗ denotes
the measure theoretic boundary (see, e.g., [11]). The above construction of vn is
then performed, where the region “below” Sun is simply Ent ∩ Q (assuming the
orientation of Q is such that the larger value of u is “below” Su). The effect of
this construction on the total energy of v includes the addition of the (arbitrarily
small, for n large) increments HN−1(Q ∩ ∂∗Ent \ Sun), as well as (also small) new
discontinuity sets created on the boundary of each cube, since Su and Sun do not
necessarily coincide on these boundaries ∂Q.

3. Problems with local minimization. If one seeks a model based on local
minimality rather than global, there is immediately the issue of what to do at the
discrete-time stage, to find un(tni+1) from un(tni ), instead of globally minimizing the
energy (unilaterally). Whatever is done, it must be such that if, for example, un(ti)
is at the bottom of a local energy well for the energy at time ti+1, then we ought to
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have un(ti+1) = un(ti). Furthermore, this must be the case even if there exists some
v with lower energy, otherwise it would just be an algorithm for globally minimizing
evolutions. Of course, this principle is the same if un(ti) is in a local energy well at
time ti+1, even if it is not at the exact bottom – at time ti+1, it should just move
to the bottom of that well, whether or not somewhere there is a lower energy state
v.

The question then is, what kind of minimization should be performed at the
discrete-time level that will produce evolutions with this property? One natural
idea is to consider gradient flows for the energy corresponding to time ti+1, with
initial condition un(ti), and take the long-time limit (see [10]). More generally, one
could consider all states v that are reachable by continuous paths starting at un(ti),
with the constraint, of course, that the energy does not increase along the path, so
that in particular, a state will be stuck in its local energy well. Specifically, we can
define

Definition 3.1 (Slides). We say that a continuous map φ : [0, 1]→SBV is a slide
for u ∈ SBV if φ(0) = u, Eφ(τ2) ≤ Eφ(τ1) for all τ1 < τ2, and Eφ(0) > Eφ(1).

Here,
Eφ(τ) := Eel(φ(τ)) +HN−1

(
Cφ(τ)

)
and

Cφ(τ) :=
⋃
s∈Q
s≤τ

Sφ(s).

In fact, it follows from lemma 6.6 of [17] (see lemma 2.2 of [16]) that:

Lemma 3.2. For any slide φ, Cφ satisfies the following properties:
1. Cφ is increasing (Cφ(τ1) ⊂ Cφ(τ2) if τ1 < τ2)
2. Sφ(τ) ⊂ Cφ(τ) for all τ
3. Cφ is the smallest (in the sense of inclusion) function satisfying the previous

two conditions.

These slides could then be used to modify global minimization as follows. At each
discrete time tni+1, we take the discrete solution at the prior time, un(tni ) and modify
it to obtain the correct Dirichlet data at time tni+1, to get vn(tni+1). For example,
this can be done by finding w ∈ H1(Ω) satisfying ∆w = 0 and w = f(tni+1)− f(tni )
on ∂Ω, and then set vn(tni+1) := un(tni ) + w. Then, we minimize

v 7→ Eel(v) +HN−1(Sv \ Cn(tni ))

over all v that are accessible from vn(tni+1), meaning that there exists a slide starting
at vn(tni+1) that ends at v. Note that in particular, if we consider a gradient flow
(really, a minimizing movement (see, e.g., [2])) beginning at vn(tni+1), and the long
time limit is v, then v is accessible. This would then be iterated in i, and each
un(tni+1) would presumably be a unilateral local minimizer. The limit n → ∞
would then be taken, as described above, in order to obtain u(t).

It turns out that there are two difficulties with implementing this approach, and
one of them is fatal. The first is that Jump Transfer cannot work with these slides –
in particular, as described above, the filling-in of Sun with ∂∗Ent will in general add
some arbitrarily small amount to the energy, of size at least HN−1(Q∩ ∂∗Ent \Sun)
in each cube Q used to cover Su. Hence, for a suitable path ϕ starting at u(t), along
which the total energy does not increase, if un(tni ) SBV⇀ u(t), when we transfer this
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Figure 2: Local minimizers can converge to non-local minimizers

path to un(tni ), it is no longer a slide. The main consequence is that if u(t) is not
a local minimizer, and so there exists a slide starting at u(t), this slide cannot be
transferred to un(tni ) in a way that keeps it a slide. Therefore, it is consistent with
Jump Transfer that

un
SBV
⇀ u, un are all (strict) local minimizers, but u is not. (2)

In fact, this is not just a failure of this method – it turns out that it is possible to
have (2), as is easy to see with a simple counterexample: suppose we have u ∈ SBV
with jump set Su that has a single tip, e.g., Su is a line segment with one end in the
boundary of Ω and the other end (the crack tip) in Ω (see the left panel in Figure
2). Suppose further that u is in elastic equilibrium, but it is not a unilateral local
minimizer, i.e., the crack can grow continuously from its tip such that the total
energy is strictly decreasing. If we add a circle of radius 1/n at the crack tip of u
(placing it so that the tip sits on the circle, not at the center, see the right panel of
Figure 2), and set un to be the corresponding elastic equilibrium, then, since this
new crack set has no tip, ∇un has no singularity. It is then an easy consequence
that these un are (strict) local minimizers (see, e.g., [6]), and also that un → u. So,
unilateral local minimality simply is not maintained under weak SBV limits.

4. Strengthening local minimality: a stability condition. One thing that is
clear from the above problems with local minimality is that, if we want a stability
criterion related to the existence of slides, and that is maintained under weak SBV
convergence, i.e.,

un
SBV
⇀ u and the un are stable ⇒ u is stable,

we cannot insist that the energy does not increase at all along the continuous paths
to lower energy states. Fortunately, once we loosen this “no increase” condition
an arbitrarily small amount, everything goes through. Precisely, our new definition
([16]) is:

Definition 4.1 (Epsilon-Slides). We say that a continuous map φ : [0, 1]→SBV is
an ε-slide for u ∈ SBV if φ(0) = u,

sup
τ1<τ2

[
Eφ(τ2)− Eφ(τ1)

]
< ε, (3)

and Eφ(0) > Eφ(1). A continuous map φ : [0, 1]→SBV is an ε̄-slide for u ∈ SBV
if φ(0) = u,

sup
τ1<τ2

[
Eφ(τ2)− Eφ(τ1)

]
≤ ε, (4)

and Eφ(0) > Eφ(1).
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Of course, Lemma 3.2 holds for ε and ε̄-slides as well as for slides.

Definition 4.2 (Epsilon Stability). u ∈ SBV is ε-stable if it has no ε-slides, and
ε̄-stable if it has no ε̄-slides.

As we explain in the next section, one can then prove existence of the follow-
ing evolutions, which in particular have the property that at each time, they are
unilateral local minimizers, but are not necessarily global minimizers.

Definition 4.3 (Epsilon-Stable Fracture). (u,C) is an ε-stable fracture if
1. t 7→ C(t) is monotonic
2. u(t) = g(t) on ∂Ω \ C(t) for all t ∈ [0, T ]
3. u(t) is ε-stable with respect to C(t) for every t ∈ [0, T ]
4. the limits

u(t)− := lim
s→t−

u(s), C(t)− :=
⋃
s<t

C(s),

u(t)+ := lim
s→t+

u(s), C(t)+ :=
⋂
s>t

C(s)

exist, and if (u(t), C(t))− 6= (u(t), C(t))+, then there exists an ε̄-slide with re-
spect to C(t)− from u−(t) to u+(t). Furthermore, E(u+(t), C+(t)) ≤ E(v, Cφ(1))
for every v that is ε-accessible (with ε-slide φ) from u−(t) with respect to
C(t)−.

5. for every t1 < t2,

E(u(t2), C(t2))− E(u(t1), C(t1)) ≤
∫ t2

t1

∫
Ω

∇u · ∇ġdxdt.

In the above, E denotes the total energy, i.e., E(u,C) := Eel(u) + HN−1(C),
and for simplicity the elastic energy density is assumed to be |∇u|2. We should
also note that given any initial data u0 that is ε-stable, there exists an evolution as
above with u(0) = u0.

5. Path Transfer. One can then prove (see Remark 4.4 in [16]) the following
stronger version of Jump Transfer for paths:

Theorem 5.1 (Path Transfer). Let Ω ⊂ Ω′, with ∂Ω Lipschitz, and let {un} ⊂
SBV (Ω′) be such that
• Sun ⊂ Ω;
• |∇un| weakly converges in L1(Ω′); and
• un → u in L1(Ω′),

where u ∈ BV (Ω′) with HN−1(Su) <∞. Then, for every path

ϕ : [0, 1]→SBVp(Ω′),

1 ≤ p <∞, with HN−1(Cϕ(1)) <∞, there exists a sequence

ϕn : [0, 1]→SBVp(Ω′)

with ϕn(τ) = ϕ(τ) on Ω′ \ Ω ∀τ ∈ [0, 1], such that
i) ϕn(τ)→ ϕ(τ) strongly in L1(Ω′) uniformly in τ ;

ii) ∇ϕn(τ)→ ∇ϕ(τ) strongly in Lp(Ω′) uniformly in τ ;
iii) HN−1

(
[Sϕn(τ) \ Sun ] \ [Sϕ(τ) \ Su]

)
→ 0;

iv) HN−1(Cϕn(1) ∩ Tn \ Sun)→ 0,



8 CHRISTOPHER J. LARSEN

where ϕn = ϕ outside Tn, and |Tn| → 0.

The proof is mostly based on the observation that, since Cϕ(1) \ Su has density
zero HN−1-a.e. in Su, the cubes Q can be chosen such that HN−1(Cϕn(1)∩Tn\Sun)
is arbitrarily small, where Tn is the union of these cubes.

The point of the theorem is that we can construct ϕn such that, for the elastic
energy density |∇u|2,∫

Ω

|∇ϕn(τ)|2dx ≤
∫

Ω

|∇ϕ(τ)|2dx+O(n),

where O(n) is uniform in τ , and similarly

HN−1(Cϕn(τ)) ≤ HN−1(Cϕ(τ)) +O(n)

uniformly in τ . Hence, if u has an ε-slide ϕ (and it follows from the definition that
it is also an ε − δ-slide for some δ > 0), then for n large enough that the term
O(n) < δ, the ϕn are ε-slides for un. Therefore, in contrast to (2), we have:

un
SBV
⇀ u and the un are ε-stable ⇒ u is ε-stable.

Finally, we note that ε-stability implies unilateral local minimality (see lemma 4.7
in [16]), and strict unilateral local minimizers are ε-stable for ε sufficiently small.
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