Fracture evolution and locality

Chris Larsen

Worcester Polytechnic Institute

May 11, 2008
Quasi-static evolution

The problem that we consider is to predict crack paths in a quasi-static setting. More precisely, we have an elastic material occupying a domain Ω and we suppose that the material is in equilibrium subject to a boundary condition $f(t)$. Then, if there is no crack, the displacement $u(t)$ minimizes

$$E_{el}(v) = \int_{\Omega} |\nabla v|^2$$

subject to $v = f(t)$ on $\partial \Omega$ for every time t, where we consider the simplified elastic energy E_{el} and we suppose that f varies slowly compared to the speed with which the material reaches equilibrium.

If there is a fixed crack K, each displacement would solve the same Dirichlet problem, but in the space $H^1(\Omega \setminus K)$ instead of $H^1(\Omega)$, which implies that the stored elastic energy can only be lower if there is a crack.

Chris Larsen (WPI)
Quasi-static evolution

The problem that we consider is to predict crack paths in a quasi-static setting. More precisely, we have an elastic material occupying a domain Ω and we suppose that the material is in equilibrium subject to a boundary condition $f(t)$. Then, if there is no crack, the displacement $u(t)$ minimizes

$$E_{el}(v) = \int_{\Omega} |\nabla v|^2 \quad \text{subject to} \quad v = f(t) \text{ on } \partial \Omega$$

for every time t, where we consider the simplified elastic energy E_{el} and we suppose that f varies slowly compared to the speed with which the material reaches equilibrium.

If there is a fixed crack K, each displacement would solve the same Dirichlet problem, but in the space $H^1(\Omega \setminus K)$ instead of $H^1(\Omega)$, which implies that the stored elastic energy can only be lower if there is a crack.
Griffith’s criterion

The starting point for predicting crack growth is Griffith’s criterion (1920). Griffith considered a pre-existing crack K with a specified future path (here in blue).

For a crack increment of length l, $E(l)$ is the elastic energy of the corresponding elastic equilibrium.
Griffith’s criterion

The starting point for predicting crack growth is Griffith’s criterion (1920). Griffith considered a pre-existing crack K with a specified future path (here in blue).

For a crack increment of length l, $E(l)$ is the elastic energy of the corresponding elastic equilibrium. The criterion states that the crack can only grow if the rate of decrease of elastic energy as l increases is large enough, i.e., if

$$ -\frac{dE(l)}{dl} < G_c \quad \text{the crack can not run} $$
$$ = G_c \quad \text{the crack can run} $$
$$ > G_c \quad \text{the crack is unstable}. $$
The static problem

Formulated by Ambrosio and Braides (1995): If u minimizes

$$v \mapsto \int_{\Omega} |\nabla v|^2 + \mathcal{H}^1(S_v)$$

over $v \in SBV_f(\Omega)$, then the crack $K := S_u$ is stable (taking $G_c = 1$). The reason is that each increment in length l cannot reduce the energy, i.e.,

$$E(l) + l \geq E(0),$$

or

$$-\frac{E(l) - E(0)}{l} \leq 1.$$
The static problem

Formulated by Ambrosio and Braides (1995): If u minimizes

$$ v \mapsto \int_{\Omega} |\nabla v|^2 + \mathcal{H}^1(S_v) $$

over $v \in SBV_f(\Omega)$, then the crack $K := S_u$ is stable (taking $G_c = 1$). The reason is that each increment in length l cannot reduce the energy, i.e.,

$$ E(l) + l \geq E(0), $$

or

$$ -\frac{E(l) - E(0)}{l} \leq 1. $$

Note: This and all that follows is in any dimension, but we will assume 2-D throughout.
Quasi-static formulation

This led to the following quasi-static formulation (Francfort-Marigo, 1998), where \(f = f(t) \).

For discrete times \(\{t_i\} \), \(u(t_i) \) minimizes

\[
\nu \mapsto \int_{\Omega} |\nabla \nu|^2 + \mathcal{H}^1(S_\nu \setminus \bigcup_{j<i} S_{u(t_j)})
\]

over \(\nu \in SBV_{f(t_i)}(\Omega) \). The technicality in the last term models irreversibility of fracture, so that only the new crack at \(t_i \) is penalized.
Quasi-static formulation

This led to the following quasi-static formulation (Francfort-Marigo, 1998), where \(f = f(t) \).

For discrete times \(\{t_i\} \), \(u(t_i) \) minimizes

\[
\nu \mapsto \int_{\Omega} |\nabla \nu|^2 + \mathcal{H}^1(S\nu \setminus \bigcup_{j<i} S_u(t_j))
\]

over \(\nu \in SBV_{f(t_i)}(\Omega) \). The technicality in the last term models irreversibility of fracture, so that only the new crack at \(t_i \) is penalized.

The plan was then to take a sequence of discretizations \(\{t^n_i\} \) with, e.g., \(t^n_i - t^n_{i-1} = \frac{1}{n} \), resulting in a sequence \(\{u_n\} \) that hopefully converges to a \(u \) that is a solution to a corresponding continuous-time problem. This has been carried out (Dal Maso, Francfort, L., Toader).
Connection to Griffith

The resulting solution \(u(t) \) with \(K(t) := \bigcup_{\tau \leq t} S_{u(\tau)} \) satisfies Griffith’s criterion if \(t \mapsto \mathcal{H}^1(K(t)) \) is continuous.
Connection to Griffith

The resulting solution $u(t)$ with $K(t) := \bigcup_{\tau \leq t} S_{u(\tau)}$ satisfies Griffith’s criterion if $t \mapsto H^1(K(t))$ is continuous.

Problem:

\[\text{L} \quad \text{L} \]
Connection to Griffith

The resulting solution \(u(t) \) with \(K(t) := \bigcup_{\tau \leq t} S_{u(\tau)} \) satisfies Griffith’s criterion if \(t \mapsto \mathcal{H}^1(K(t)) \) is continuous.

Problem:

At the pre-existing crack, the energy release rate can be made arbitrarily small by choosing a suitable boundary condition, independent of \(L \), but if \(L \) is large enough,
Connection to Griffith

The resulting solution $u(t)$ with $K(t) := \bigcup_{\tau \leq t} S_u(\tau)$ satisfies Griffith’s criterion if $t \mapsto \mathcal{H}^1(K(t))$ is continuous.

Problem:

At the pre-existing crack, the energy release rate can be made arbitrarily small by choosing a suitable boundary condition, independent of L, but if L is large enough, global minimization will result in the crack growing. This violates Griffith.

Note the connection to local vs. global minimality – the initial crack was a local minimizer and was stable in the sense of Griffith.
Quasi-static evolution with local minimization

Big question: how do we do quasi-static evolution based on local minimization?

Our view: the real issue is accessibility ⇔ stability.
Quasi-static evolution with local minimization

Big question: how do we do quasi-static evolution based on local minimization?

Our view: the real issue is accessibility \iff stability.

At each time step t_i, instead of minimizing the total energy over all functions, we should minimize only over those that are accessible from $u(t_{i-1})$.

With global minimization, every state is accessible from every other state \iff the only stable states are global minimizers (resulting in a Griffith violation).

We want to have that if u is a strict local minimizer, then there is no accessible state with lower energy \iff strict local minimizers are stable.
Quasi-static evolution with local minimization

Big question: how do we do quasi-static evolution based on local minimization?

Our view: the real issue is accessibility ⇔ stability.

At each time step t_i, instead of minimizing the total energy over all functions, we should minimize only over those that are accessible from $u(t_{i-1})$.

With global minimization, every state is accessible from every other state ⇔ the only stable states are global minimizers (resulting in a Griffith violation).
Quasi-static evolution with local minimization

Big question: how do we do quasi-static evolution based on local minimization?

Our view: the real issue is accessibility \iff stability.

At each time step t_i, instead of minimizing the total energy over all functions, we should minimize only over those that are accessible from $u(t_{i-1})$.

With global minimization, every state is accessible from every other state \iff the only stable states are global minimizers (resulting in a Griffith violation).

We want to have that if u is a strict local minimizer, then there is no accessible state with lower energy \iff strict local minimizers are stable.
This suggests a definition of accessibility:
\(v \) is accessible from \(u \) \iff \(\) there exists a continuous path \(\phi \) from \(u \) to \(v \) along which the total energy is nonincreasing.
This suggests a definition of accessibility:
\(\nu \) is accessible from \(u \) \(\iff \) there exists a continuous path \(\phi \) from \(u \) to \(\nu \) along which the total energy is nonincreasing.

An idea like this has been tried by Dal Maso and Toader (2002), based on following gradient flows from \(u(t_{i-1}) \) to find \(u(t_i) \). Unfortunately, there are technical difficulties in proving that, when \(u_n(t) \to u(t) \), we have the properties we want for \(u(t) \). In particular, local minimality is a problem.

In fact, the same problem occurs with accessibility – we would need to show that since the \(u_n \) were stable, so is \(u \), i.e., if there is a \(\nu \) that is accessible from \(u \) and has lower energy, then there are \(\nu_n \) that are accessible from \(u_n \) and have lower energy.
This suggests a definition of accessibility:
\(\nu \) is accessible from \(u \) \(\iff \) there exists a continuous path \(\phi \) from \(u \) to \(\nu \) along which the total energy is nonincreasing.

An idea like this has been tried by Dal Maso and Toader (2002), based on following gradient flows from \(u(t_{i-1}) \) to find \(u(t_i) \). Unfortunately, there are technical difficulties in proving that, when \(u_n(t) \to u(t) \), we have the properties we want for \(u(t) \). In particular, local minimality is a problem.

In fact, the same problem occurs with accessibility – we would need to show that since the \(u_n \) were stable, so is \(u \), i.e., if there is a \(\nu \) that is accessible from \(u \) and has lower energy, then there are \(\nu_n \) that are accessible from \(u_n \) and have lower energy. This is false.
We illustrate part of the problem in terms of stability.

Consider a crack K that is unstable, i.e., the total energy decreases as the crack grows:
We illustrate part of the problem in terms of stability.

Consider a crack K that is unstable, i.e., the total energy decreases as the crack grows:

Then consider the addition of pre-existing circular cracks in front of the crack tip.
We illustrate part of the problem in terms of stability.

Consider a crack K that is unstable, i.e., the total energy decreases as the crack grows:

\[
\begin{array}{c}
\ldots \circ \quad \circ \quad \circ \\
\end{array}
\]

Then consider the addition of pre-existing circular cracks in front of the crack tip. The crack is still unstable since the addition of crack at a small angle will reduce the energy. To what stable state should it go?
We illustrate part of the problem in terms of stability.

Consider a crack K that is unstable, i.e., the total energy decreases as the crack grows:

Then consider the addition of pre-existing circular cracks in front of the crack tip. The crack is still unstable since the addition of crack at a small angle will reduce the energy. To what stable state should it go?

Our view:
In terms of the energy function $E(l)$, so that we cannot move to the state that we want without the energy initially increasing by a small amount.
In terms of the energy function $E(l)$,

so that we cannot move to the state that we want without the energy initially increasing by a small amount. Allowing small energy increases in our definitions of accessibility and stability overcomes all mathematical issues.
Definition (ε-accessible)

ν is ε-accessible from u if there exists a continuous function φ : [0, 1] → SBV(Ω) such that φ(0) = u, φ(1) = ν, and

$$\sup_{\tau_1 < \tau_2} [E(\phi(\tau_2)) - E(\phi(\tau_1))] < \varepsilon.$$

We then have the corresponding definition of stability:

Definition (ε-stability)

u is ε-stable if there does not exist an ε-accessible ν with strictly lower energy. The path to such a ν is called an ε-slide.

We also define ¯ε-accessibility, where the inequality is not strict.
Existence theorem

Theorem

Given $f(t)$ with sufficient regularity, there exists a quasi-static evolution $u(t)$ with the properties of a globally minimizing evolution, modified as follows:

- $u(t)$ is a local minimizer at every t (coming from being $\bar{\varepsilon}$-stable)
- Energy inequality:

$$E(u(t_2)) - E(u(t_1)) \leq \int_{t_1}^{t_2} \int_{\Omega} \nabla u \cdot \nabla \dot{f} \, dx \, dt$$

for every $t_1 \leq t_2$.
- If $u^-(t) \neq u^+(t)$, then $u^+(t)$ is $\bar{\varepsilon}$-accessible from $u^-(t)$ and has lower energy than all states that are ε-accessible from $u^-(t)$.

Chris Larsen (WPI)
Proof.

- First issue: show that if $u_n \rightharpoonup u$ and there exists an ε-slide for u, then for n sufficiently large, there exists an ε-slide for u_n.

Strategy: For an ε-slide (ϕ, K), “transfer” $K(\tau) \cap S_u$ to S_{u_n}, leaving the rest alone. Precisely,

$$K_n(\tau) := \bigcup_i (K(\tau_i) \setminus K(\tau_i')) \cup (K(\tau) \setminus S_u) \cup \mathcal{T}_n\left(K(\tau)\right)$$

and define $\phi_n(\tau)$ to be the elastic minimizer subject to $S_{\phi_n(\tau)} \subset K_n(\tau)$.

- Second: show that all drops in energy for u come from drops in energy for u_n.

- Smaller issue: show that ε-stability implies local minimality (quick for fracture).