Stress at a point
Uniaxial load

Uniaxial load

Section

Stress cube for uniaxial stress loading

\[\sigma_x = \frac{P}{A} \]
Stress at a point

General load case. Stress cube in 2D

2D projection: x-y plane

Notation

- σ: Normal Stress
- τ: Shear Stress

Equilibrium conditions require that

$$\tau_{xy} = \tau_{yx}$$

Why?
Stress at a point

General load case. Stress cube in 3D

There are 9 components of stress.

Equilibrium conditions are used to reduce the number of stress components to 6:

\[
\begin{align*}
\tau_{xy} &= \tau_{yx} \\
\tau_{xz} &= \tau_{zx} \\
\tau_{yz} &= \tau_{zy}
\end{align*}
\]
Stress tensor

Cauchy stress tensor

\[
\begin{bmatrix}
\sigma_{xx} & \tau_{xy} & \tau_{xz} \\
\tau_{yx} & \sigma_{yy} & \tau_{yz} \\
\tau_{zx} & \tau_{zy} & \sigma_{zz}
\end{bmatrix}
\]

Tensors are quantities that are invariant to coordinate transformations.
Determination of principal stresses
Principal \textit{normal} stresses

- This problem involves performing coordinate transformation, which can provide a stress tensor that does NOT contain shear stresses.
- In 2D, this can be illustrated as:

\begin{itemize}
 \item Stress cube in original coordinate system \((x,y)\)
 \item Stress cube in transformed coordinate system \((x',y')\) -- only normal stresses exist: \(\sigma_1\) and \(\sigma_3\), in this 2D case.
\end{itemize}
Determination of principal stresses
Principal **normal** stresses

This problem involves performing coordinate transformation, which can provide a stress tensor that does NOT contain shear stresses, that is

\[
\begin{bmatrix}
\sigma_{xx} & \tau_{xy} & \tau_{xz} \\
\tau_{yx} & \sigma_{yy} & \tau_{yz} \\
\tau_{zx} & \tau_{yz} & \sigma_{zz}
\end{bmatrix}
\begin{bmatrix}
\hat{n} = \\
\end{bmatrix}
\begin{bmatrix}
\sigma & 0 & 0 \\
0 & \sigma & 0 \\
0 & 0 & \sigma
\end{bmatrix}
\]

Initial stress tensor

Unit vector, normal to principal plane

Transformed stress tensor

Unit vector, normal to principal plane

Same vectors
Determination of principal stresses

Principal normal stresses

Previous equation can be written as

\[
\begin{bmatrix}
\sigma_{xx} - \sigma & \tau_{xy} & \tau_{xz} \\
\tau_{yx} & \sigma_{yy} - \sigma & \tau_{yz} \\
\tau_{zx} & \tau_{yz} & \sigma_{zz} - \sigma
\end{bmatrix}
\hat{n} = \begin{bmatrix}
\sigma_{xx} - \sigma & \tau_{xy} & \tau_{xz} \\
\tau_{yx} & \sigma_{yy} - \sigma & \tau_{yz} \\
\tau_{zx} & \tau_{yz} & \sigma_{zz} - \sigma
\end{bmatrix}
\begin{bmatrix}
n_x \\
n_y \\
n_z
\end{bmatrix} = \begin{bmatrix} 0 \\
0 \\
0
\end{bmatrix}
\]

implying that the determinant

\[
\begin{vmatrix}
\sigma_{xx} - \sigma & \tau_{xy} & \tau_{xz} \\
\tau_{yx} & \sigma_{yy} - \sigma & \tau_{yz} \\
\tau_{zx} & \tau_{yz} & \sigma_{zz} - \sigma
\end{vmatrix} = 0
\]

(this is an Eigenvalue problem)
Determination of principal stresses

Principal normal stresses

Expanding determinant and setting it to zero yields

$$\sigma^3 - C_2\sigma^2 + C_1\sigma - C_0 = 0$$

in which

$$C_2 = \sigma_{xx} + \sigma_{yy} + \sigma_{zz}$$

$$C_1 = \sigma_{xx}\sigma_{yy} + \sigma_{yy}\sigma_{zz} + \sigma_{zz}\sigma_{xx} - \tau_{xy}^2 - \tau_{yz}^2 - \tau_{zx}^2$$

$$C_0 = \sigma_{xx}\sigma_{yy}\sigma_{zz} + 2\tau_{xy}\tau_{yz}\tau_{zx} - \sigma_{xx}\tau_{yz}^2 - \sigma_{yy}\tau_{zx}^2 - \sigma_{zz}\tau_{xy}^2$$

are stress invariants (have the same magnitudes for all choices of coordinate axes \((x,y,z)\) in which the applied stresses are measured or calculated)

The principal normal stresses, \(\sigma_1, \sigma_2, \sigma_3\), are the three roots of the cubic polynomial -- always real and typically ordered as: \(\sigma_1 > \sigma_2 > \sigma_3\)
Determination of principal stresses

Principal shear stresses

Principal shear stresses can be found from values of the principal normal stresses as

\[\tau_{13} = \frac{|\sigma_1 - \sigma_3|}{2} \]

\[\tau_{21} = \frac{|\sigma_2 - \sigma_1|}{2} \]

\[\tau_{32} = \frac{|\sigma_3 - \sigma_2|}{2} \]
Mohr's circle: principal normal and shear stresses

Graphical representation of previous equations: 3D

Equivalent nomenclature:

\[\sigma_x = \sigma_{xx} \]
\[\sigma_y = \sigma_{yy} \]
\[\sigma_{xy} = \tau_{xy} \]
Determination of principal stresses
Principal normal and shear stresses: 2D case

We will use these equations extensively

Principal normal stresses:

$$\sigma_1, \sigma_3 = \frac{\sigma_{xx} + \sigma_{yy}}{2} \pm \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \tau_{xy}^2}$$

Maximum shear stress:

$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \tau_{xy}^2}$$
Mohr's circle: principal normal and shear stresses

Graphical representation of previous equations: 2D

Principal stresses:
\[\sigma_{1,3} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \]

Applied normal stress
\[\sigma_{\text{avg}} = \frac{\sigma_x + \sigma_y}{2} \]

Applied shear stress
\[\tau_{\text{max in-plane}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \]

Maximum shear
Determination of principal stresses
Review author’s textbook

- Examples: 4-1, 4-2, and 4-3
- Review and master Section 4.6
Determination of principal stresses
Example: solve in class / assignment

A piece of chalk is subjected to combined loading consisting of a tensile load P and a torque T, see figure. The chalk has an ultimate strength σ_u as determined by a tensile test. The load P remains constant at such a value that it produces a tensile test of $0.51 \cdot \sigma_u$ on any cross-section. The torque T is increased gradually until fracture occurs on some inclined surface.

Assuming that fracture takes place when the maximum principal stress σ_1 reaches the ultimate strength σ_u, determine the magnitude of the torsional shearing stress produced by the torque T at fracture and determine the orientation of the fracture surface.
Determination of principal stresses

Example: solve in class / assignment

Stress element

\[\sigma_{xx} = 0.51\sigma_u \]

\[\sigma_{xy} = -0.70\sigma_u \]
Reading assignment

- Chapters 4 of textbook: Sections 4.0 to 4.6
- Review notes and text: ES2501, ES2502

Homework assignment

- Author’s: 4-2, 4-3
- Solve: 4-1(a,c,f,i), 4-4