Introduction: Wave Optics
10 November 2014
Wave optics: light waves

Wave equation

An optical wave -- monochromatic -- can be described mathematically by the complex wavefunction

\[U(x, y, z, t) = a(x, y, z) \cdot \exp[j\phi(x, y, z)] \cdot \exp[j2\pi\nu t] \] (1)

where

- \(x, y, z \) are the components of the position vector \(\mathbf{r} \)
- \(t \) is time
- \(\phi(x, y, z) \) is the optical phase
- \(a(x, y, z) \) is the amplitude
- \(\nu \) is the frequency [Hz]
 \[\omega = 2\pi\nu \] angular frequency [rad/sec]
- \(j \) is the complex quantity \(\sqrt{-1} \)
Wave optics: light waves

Wave equation

Equation (1) can be written as

\[U(x, y, z, t) = U(x, y, z) \cdot \exp[j2\pi\nu t] \] (2)

where the time-independent term,

\[U(x, y, z) = a(x, y, z) \cdot \exp[j\phi(x, y, z)] \] (3)

is the complex amplitude of the optical wave \(U(x, y, z, t) \)
Wave optics: light waves

Wave equation

Function \(U(x, y, z, t) \) must satisfy the wave equation (in order to represent a valid wave function), therefore,

\[
\nabla^2 U - \frac{1}{c^2} \frac{\partial^2 U}{\partial t^2} = 0
\]

where

\[
c = \frac{c_0}{n} \quad \text{for} \quad n \geq 1
\]

in which \(c_0 \) is the speed of light in free-space and the wave propagates in a medium with index of refraction \(n \).
Wave optics: light waves

Wave equation

By substituting Eq. 2 into the wave equation, Eq. 4, the following equation is obtained -- exercise in class/homework

$$(\nabla^2 + k^2)U(x, y, z) = 0 \quad (6)$$

which is called the **Helmholtz equation**, where

$$k = \frac{2\pi v}{c} = \frac{\omega}{c} = \frac{2\pi}{\lambda} \quad (7)$$

in the *wave number*, and λ is the spatial wavelength.

Note that:

$$\lambda = \frac{c}{v} \quad (8)$$
Wave optics: light waves

Elementary waves

The two canonical solutions of the Helmholtz equation in a homogenous medium are: (1) the plane wave, and (2) the spherical wave.

(1) The plane wave

The plane wave has the complex amplitude:

\[
U(x, y, z) = A \exp(-j \mathbf{k} \cdot \mathbf{r})
\]

\[
= A \exp[-j(k_x \cdot x + k_y \cdot y + k_z \cdot z)]
\]

where

- \(A \) is the amplitude, or complex envelope
- \(\mathbf{k} = k_x \hat{i} + k_y \hat{j} + k_z \hat{k} = (k_x, k_y, k_z) \) is the propagation direction vector
- \(\mathbf{r} = x \hat{i} + y \hat{j} + z \hat{k} = (x, y, z) \) is the position vector
- \(j \) is the complex quantity \(\sqrt{-1} \)
Elementary waves

Plane waves

For Eq. 9 to satisfy the Helmholtz equation, Eq. 6, it is necessary that

\[k_x^2 + k_y^2 + k_z^2 = k^2 \] \hspace{1cm} (10.1)

that is, the magnitude of the propagation direction vector, \(k \), is equal to the wave number, \(k \),

\[|k| = k \] \hspace{1cm} (10.2)
Elementary waves

Plane waves

Since the phase, or \(\arg[U(x, y, z)] = \arg[A] - k \cdot r \), the wavefronts are

\[
k_x \cdot x + k_y \cdot y + k_z \cdot z = 2\pi q + \arg[A]
\]

for \(q = \text{integer} \)

Equation 11 describes the family of parallel planes that is perpendicular to the propagation direction vector, \(k \). These planes are called: wavefronts.

Planes are separated by the distance

\[
\lambda = \frac{2\pi}{k}
\]

(12)
Elementary waves

Plane waves

If the z-axis is taken in the direction of the propagation vector, k, then

$$U(z) = A \exp(-j k z) \quad (13)$$

using Eqs 13 and 2,

$$U(z, t) = A(z) \cdot \exp[-j k z] \cdot \exp[j 2\pi \nu t] \quad (14)$$

$$= A(z) \cdot \exp[j(2\pi \nu t - k z)]$$

$$= |A| \cdot \exp\{j(2\pi \nu t - k z + \arg[A])\} \quad (15)$$

and by separating the real component of Eq. 15, it is obtained

$$u(z, t) = \text{Re}\{U(z, y)\} = |A| \cdot \cos(2\pi \nu t - k z + \arg[A]) \quad (16)$$

$$= |A| \cdot \cos\{2\pi \nu(t - \frac{z}{C}) + \arg[A]\}$$
Elementary waves

Plane waves

A plane wave traveling in the z-direction is a periodic function of z with spatial period λ and a periodic function of t with temporal period $1/\nu$.
Elementary waves

Observations

- **Optical phase**, obtained from Eq. 16,

\[
\text{arg}\{\text{Re}\{U(z,t)\}\} = 2\pi \nu (t - \frac{z}{c}) + \text{arg}[A] \tag{17}
\]

varies as a function of time and position.

- **Optical intensity** is determined as

\[
I = |U|^2 = U \cdot U^* \tag{18}
\]

where

\[U^* \text{ is the complex conjugate of } U \]
Wave optics: light waves

Elementary waves

(2) The spherical wave

The spherical wave is another canonical solution of the Helmholtz equation. Its complex amplitude is

\[U(r) = \frac{A}{r} \exp(-jk r) \]

(19)

where \(r \) is the distance from the propagation origin.

\[k = \frac{2\pi}{\lambda} \]

is the wave number, and

\[I = U \cdot U^* = \frac{|A|^2}{r^2} \]

(proportional to the square of the distance from the origin)
Elementary waves

Spherical waves

Taking $\arg[A] = 0$, for simplicity,

$$k \cdot r = k \sqrt{x^2 + y^2 + z^2} = 2\pi q + \arg[A]$$

for $q = \text{integer}$

Equation 20 describes the family of concentric spheres: spherical wavefronts.

Spheres are separated by the distance

$$\lambda = \frac{2\pi}{k}$$

Cross-section of the wavefronts of a spherical wave
The rays of ray optics are orthogonal to the wavefronts of wave optics. Note the effect of a lens on rays and wavefronts.
Optical interference

Interferometers

Mach-Zender
Optical interference
Interferometers
Optical interference

Interferometers

Sagnac

Beamsplitter

U_0

U_1

U_2

U
Optical interference
Holographic interferometry

Recording

Reconstruction
Interference equation

Consider the superposition of two monochromatic plane waves U_1 and U_2 from the same light source

$$U = U_1 + U_2 \quad (22)$$

The corresponding intensity is,

$$I = |U|^2 = |U_1 + U_2|^2 = |U_1|^2 + |U_2|^2 + U_1U_2^* + U_1^*U_2 \quad (23)$$

if

$$U_1 = A_1 \exp(-j k_1 \cdot r) = A_1 \exp(-j \phi_1),$$

$$U_2 = A_2 \exp(-j k_2 \cdot r) = A_2 \exp(-j \phi_2)$$

The observed intensity, measured, is

$$I = I_1 + I_2 + 2\sqrt{I_1I_2} \cos(\phi_2 - \phi_1) \quad (24)$$
Interference equation, cont'd

\[I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\phi_2 - \phi_1) \] \hspace{1cm} (25)

Defining:

\[I_B = I_1 + I_2 = \text{Background intensity} \]
\[I_M = 2\sqrt{I_1 I_2} = \text{Modulation intensity} \]

Intensity becomes:

\[I = I_B + I_M \cos(\Delta \phi) \] \hspace{1cm} (26)