PROBLEM 6.1. Consider the complex amplitude of a wave

\[U(r) = A \exp(-jK \cdot r), \]

in which \(A \) is the complex envelope, \(K \) is the wave vector (or direction of propagation vector), and \(r \) is the position vector. Demonstrate that the magnitude of vector \(K \) is equal to the wave number \((k = \frac{2\pi}{\lambda}) \), so that \(U(r) \) is an appropriate wave function representation.

PROBLEM 6.2. Refer to Problem 6.1. Demonstrate that the complex amplitude, as shown in Problem 6.1, represents a plane wave and that its wavefronts are parallel planes perpendicular to the direction of propagation vector \(K \).

PROBLEM 6.3. Demonstrate that the spherical wave characterized by the complex amplitude

\[U(r) = \frac{A}{r} \exp(-jkr), \]

where \(r \) is the position vector in spherical coordinates and \(k \) is the wave number, satisfies the Helmholtz equation, and therefore, it is a valid wave function representation. Note that the use of spherical coordinates can simplify the demonstration. Also, demonstrate that \(U(r) \) propagates with spherical wavefronts.