Lecture 08: Stress and Strain

26 January 2012
General information

Instructor: Cosme Furlong
HL-151
(508) 831-5126
cfurlong@wpi.edu
http://www.wpi.edu/~cfurlong/es2502.html

Teaching Assistants: Morteza Khaleghi
HL-150
(508) 831-5125
mkhaleghi@wpi.edu

Tatiana Popova
tpopova@wpi.edu
Due to a loading, the plate is deformed into the dashed shape shown. Determine (a) the average normal strain along the side AB, and (b) the average shear strain in the plate at A relative to the x and y axes.

Approach:

1) Define geometry
2) Determine change in geometry
3) Compute required strains
Strain: example F

Due to a loading, the plate is deformed into the dashed shape shown. Determine (a) the average normal strain along the side AB, and (b) the average shear strain in the plate at A relative to the x and y axes.

Horizontal Segment AB:

$$\varepsilon_{AB} = \frac{AB' - AB}{AB}$$

Average normal strain:
Strain: example F

Due to a loading, the plate is deformed into the dashed shape shown. Determine (a) the average normal strain along the side AB, and (b) the average shear strain in the plate at A relative to the x and y axes.

Average shear strain:

$$\gamma_{xy} = \frac{\pi}{2} - \theta'$$
The two wires are connected together at A. If the force P causes point A to be displaced horizontally 2 mm, determine the normal strain developed in each wire.

Approach:

1) Define geometry
2) Determine change in geometry
3) Compute required strains
Stress ↔ Strain

Tensile test

Stress: \[\sigma = \frac{P}{A} \]
(normal)

Strain: \[\varepsilon = \frac{l - l_0}{l_0} \]
(normal)

FIGURE 2-1
A Tensile Test Specimen

ASTM standards
Stress ↔ Strain: tensile test

<table>
<thead>
<tr>
<th>All values in inches</th>
<th>Standard specimen at nominal diameter:</th>
<th>Small specimen at nominal diameter:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.500</td>
<td>0.350</td>
</tr>
<tr>
<td>Gauge length</td>
<td>2.00±0.005</td>
<td>1.400±0.005</td>
</tr>
<tr>
<td>Diameter tolerance</td>
<td>±0.010</td>
<td>±0.007</td>
</tr>
<tr>
<td>Fillet radius (min.)</td>
<td>3/8</td>
<td>0.25</td>
</tr>
<tr>
<td>Length of reduced section (min.)</td>
<td>2.5</td>
<td>1.75</td>
</tr>
</tbody>
</table>
Material properties

Microscale tensile test

Machine is about 1.5 mm in height!!
Material properties: Stress - Strain

Tensile test: ductile material

Necking

Failure of a ductile material

Fractured surface
Stress - Strain

Stress-strain diagrams: ductile materials

Ductile material

Engineering stress:

\[\sigma = \frac{P}{A_{\text{initial}}} \]

True stress:

\[\sigma = \frac{P}{A_{\text{true}}} \]
Stress ↔ Strain: Hook’s Law

\[\sigma = E \cdot \varepsilon \]

\(E \) = proportionality constant

\(\varepsilon \) = strain

\(\sigma \) = stress

\(E \) (aka Young’s modulus)

Elastic range

Engineering stress

\(\sigma_k = 63 \) ksi

\(\sigma_f = 47 \) ksi

\((\sigma_Y)_u = 38.4 \) ksi

\((\sigma_Y)_l = 36 \) ksi

\(\sigma_{pl} = 35 \) ksi

\(\varepsilon_Y = 0.030 \)

\(\varepsilon_{pl} = 0.0012 \)

\(\varepsilon_f = 0.380 \)

\(\varepsilon \) (in./in.)

\(\sigma \) (ksi)

\(\sigma \)–\(\varepsilon \) diagram for mild steel
Stress ↔ Strain: elastic properties

For diagram shown:
\(E = \frac{35 \times 10^3 \text{ psi}}{0.0012 \text{ in./in.}} \approx 30 \times 10^6 \text{ psi} \)

\(\sigma - \varepsilon \) diagram for mild steel

\(\sigma_u = 63 \)
\(\sigma_f = 47 \)
\((\sigma_Y)_u = 38.40 \)
\((\sigma_Y)_l = 36 \)
\(\sigma_{pl} = 35 \)

\(\sigma_Y = 0.030 \)
\(\varepsilon_{pl} = 0.0012 \)
\(\varepsilon_f = 0.380 \)

Remember \(E \) for steel!!
Stress ↔ Strain: Hook’s Law

\[\sigma = E \cdot \varepsilon \]

\[E = \text{Elastic modulus (aka)} \]

Remember: \(E \) is nearly the same for different classes of steels!!
Stress - Strain

Stress-strain diagrams: brittle materials

Brittle material

Offset method
Stress - Strain

Stress-strain diagrams: natural rubber

\[\sigma (\text{ksi}) \]

\[2.0 \]

\[1.5 \]

\[1.0 \]

\[0.5 \]

\[\sigma - \epsilon \text{ diagram for natural rubber} \]

\[\epsilon \text{ (in./in.)} \]

Non-linear behavior !!

Stretching of rubber fibers
Stress - Strain

Stress-strain diagrams: gray cast iron

Why is gray cast iron tested in compression?

Non-linear behavior !!
Reading assignment

• Chapter 1 of textbook
• Review notes and text: ES2001, ES2501
Homework assignment

• As indicated on webpage of our course