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A Literature Review of Tensegrity

Brigitte Servatius
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1. 41 Papers on Tensegrity

1 Tensegrity Frameworks, Roth, Whiteley, 1981
2 On generic rigidity in the plane., Lovsz, Yemini, 1982
3 Survey of research work on structures., Minke, 1982
4 Cones, infinity and 1-story buildings, Whiteley, 1983
5 Statics of frameworks, Whiteley, 1984
6 Prismic tensigrids, Hinrichs, 1984
7 Scene analysis and motions of frameworks, Whiteley, 1984
8 1-story buildings as tensegrity frameworks, Recski, 1986
9 A Fuller explanation. Edmondson, 1987.
10 Immobile kinematic chains, Kuznetsov, 1989
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11 Rigidity and polarity. II, Whiteley, 1989
12 Duality between plane trusses and grillages, Tarnai, 1989
13 1st infinitesimal mechanisms, Calladine, Pellegrino, 1991
14 1-story buildings as tensegrity frameworks II, Recski 1991
15 1-story buildings as tensegrity frameworks III Recski 1992
16 Combinatorics to statics, 2nd survey, Recski, 1992
17 Rigidity, Connellly, 1993
18 Globally rigid symmetric tensegrities,

Connelly, Terrell, 1995
19 Graphs, digraphs, and the rigidity of grids, Servatius, 1995
20 Second-order rigidity and prestress stability,

Connelly, Whiteley 1996
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21 Controllable tensegrity, Skelton and Sultan 1997
22 Tensegrities and rotating rings of tetrahedra, Guest, 2000
23 Dynamics of the shell class of tensegrity structures,

Skelton 2001
24 Cyclic frustum tensegrity modules,

Nishimura, Murakami, 2001
25 Modelling and control of class NSP tensegrity structures,

Kanchanasaratool, Williamson, 2002
26 Two-distance preserving functions,

Khamsemanan, Connelly, 2002
27 Tensegrity and the viscoelasticity of the cytoskeleton,

Caladas, et.al. 2002
28 Motion control of a tensegrity platform,

Kanchanasaratool, Williamson, 2002
29 Stability conjecture in the theory of tensegrity structures,

Volokh, 2003
30 Equilibrium conditions of a tensegrity structure,

Williamson, Skelton, Han, 2003
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31 Tensegrities, Heunen, van Leijenhorst, Dick, 2004
32 Algebraic tensegrity form-finding,

Masic, Skelton, Gill, 2005
33 Towards understanding tensegrity in cells,

Shen, Wolynes, 2005
34 Structures in hyperbolic space, Connelly, 2006
35 dynamic analysis of a planar 2-DOF

tensegrity mechanism, Arsenault, Gosselin, 2006
36 Modeling virus self-assembly pathways,

Sitharam, Agbandje-Mckenna, 2006
37 Improving the DISPGB algorithm using

the discriminant ideal, Manubens, Montes, 2006
38 From graphs to tensegrity structures: geometric and

symbolic approaches, de Guzman, Orden, 2006
39 Stability conditions for tensegrity structures,

Zhang, Ohsaki, 2007
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Tensegrity frameworks

Roth, B.; Whiteley, W.
Trans. Amer. Math. Soc. 265 (1981), no. 2, 419–446.

A tensegrity framework G(p) is an abstract graph G with
each edge called a bar, cable, or strut, together with an as-
signment of a point pi in Euclidean space Rn for each vertex
of G. Let p = (· · · , pi, · · ·) ∈ Rnv, where v is the (finite)
number of vertices of G. A flexing of G(p) is a continuous (or
equivalently, analytic) path of the vertices x(t), 0 ≤ t ≤ 1,
such that x(0) = p, bars stay the same length, cables do not
increase in length, and struts do not decrease in length.
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If all flexings of G(p) are restrictions of rigid motions of Rn,
then G(p) is said to be rigid, or not a mechanism. For a
tensegrity framework an infinitesimal motion of G(p) is an
assignment of vectors µi to each vertex of G such that, for
each bar, cable, or strut, (pi − pj)(µi − µj) is = 0, ≤ 0, or
≥ 0, respectively. If µ = (· · · , µi, · · ·) is the restriction of
the derivative of a rigid motion of Rn, is said to be trivial. If
G(p) has only trivial infinitesimal motions then G(p) is said
to be infinitesimally rigid.
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A stress for G(p) is an assignment of a scalar ω{i,j} for each
edge of G such that for each vertex i,

∑
j ω{i,j}(pi− pj) = 0,

where the sum is over the edges adjacent to i. A stress is
also required to be nonpositive on cables and nonnegative on
struts. The stress is said to be proper if the stresses on all
the cables and struts are nonzero.
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The first four sections of the paper are basically a review of
notation and a description of equivalent notions of rigidity
and infinitesimal rigidity in terms of tensegrity structures.
The basic results here are essentially a review in these terms
of the papers by H. Gluck
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The basic result of the paper under review is Theorem 5.2,
which says that a tensegrity framework G(p) is infinitesi-
mally rigid if and only if G(p) has a proper stress and G(p)
is infinitesimally rigid, where G is the graph obtained by
changing all the cables, struts, and bars to bars. This re-
sult is used to prove analogues for tensegrity frameworks of
Gluck’s result about bar frameworks. Here, for instance, it
can only be said that the set {p ∈ Rnv: G(p) is infinitesi-
mally rigid}is open in Rnv and not that it is dense (Theorem
5.4). Another important result is Theorem 5.10, which says
roughly that if G(p) is infinitesimally rigid, if each pi is re-
placed by Lpi = qi, where L is a projective map of Rn and
if certain cables and struts are changed to get G′, then the
new G′(q) is infinitesimally rigid.
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Section 6 specializes to tensegrity frameworks in the plane.
Applying their stress criterion for infinitesimal rigidity, the
authors provide another proof of the infinitesimal rigidity of
Cauchy polygons described in the reviewer’s paper, as well
as many other related frameworks.
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Section 7 deals with analogous results in R3, where many
of the tensegrity frameworks of the type considered by R.
Buckminster Fuller are shown to be infinitesimally rigid.

Back to Main List
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On generic rigidity in the plane.

Lovsz, L.; Yemini, Y.
SIAM J. Algebraic Discrete Methods 3 (1982), no. 1, 91–98.

A finite graph whose vertices are points in Euclidean space
is viewed as a collection of rigid bars and universal joints (a
“tensegrity structure”, a la Buckminster Fuller). The prob-
lem of assigning a “degree of floppiness” to a graph in the
plane in such a way that degree 0 means “rigid” is dealt with
(a triangle is rigid, a square is not); and the authors use ma-
troid theory to prove G. Laman’s theorem showing how to
compute this number.
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The matroid methods are also used to show that 6-connected
graphs are rigid in the plane but 5-connected graphs need not
be. The techniques are more algebraic than those used by
other authors in dealing with similar problems, and hope
is expressed in the present paper that higher-dimensional
analogues to Laman’s theorem will now be easier to find.
Finally the authors conjecture that any n(n + 1)-connected
graph will be rigid in n-dimensional Euclidean space.

Back to Main List
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Survey of research work on structures

Minke, Gernot
Structural Topology 1982, no. 6, 21–32.

This report concerns the work of the Research Laboratory for
Experimental Building at the University of Kassel, in West
Germany. We describe the design and use of equipment for
soap film simulation of minimal length-sum networks con-
necting configurations of given points in the plane.
This research has application to city planning, in the design
of roadway and pedestrian networks. Subsequent sections
deal with the research on tensegrity structures, with space
grid cable structures, with minimum-cost fabric-covered
frame structures, and with grid shell and pneumatic struc-
tures.

Back to Main List
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Cones, infinity and 1-story buildings.

Whiteley, Walter
Structural Topology 1983, no. 8, 53–70.

Consider a 1-story building constructed with a series of ver-
tical columns (bars and joints possibly of different lengths),
a roof framework connecting the tops of the columns, plus
a minimum of three additional wall braces going to the tops
of some columns. We examine the static rigidity (or equiv-
alently, infinitesimal rigidity) of this framework by viewing
it as a ‘cone’ from the roof to the point at infinity at the
common end of all the vertical columns. We conclude that
the framework is statically rigid if and only if the orthogonal
projection of the roof onto a horizontal plane is statically
rigid in the plane, and the three wall braces do not meet a
common vertical line.
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This analysis is extended to tensegrity structures (with ca-
bles), to structures with extra wall braces (and fewer roof
braces) and to multi-story buildings with vertical columns.
In all cases the static rigidity of the structure is tested by the
static rigidity of the appropriate single plane projection.
We conclude with some mathematical recreation. We in-
troduce the spherical model for statics as a truly projective
geometry study.

Back to Main List
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Infinitesimally rigid polyhedra. I. Statics of

frameworks.

Whiteley, Walter
Trans. Amer. Math. Soc. 285 (1984), no. 2, 431–465.
The reviewer can hardly do better than use the author’s
abstract to provide a sample of the good things in store for
the reader. “In this paper the concept of static rigidity for
frameworks is used to describe the behavior of bar and joint
frameworks built around convex (and other) polyhedra.” For
example, the author proves that a triangulated polyhedron
can be rigid even when it has vertices interior to its natural
faces, extending Aleksandrov’s extension of Cauchy’s rigidity
theorem. He also studies the “static rigidity of tensegrity
frameworks (with cables and struts in place of bars) (and)
detailed analogues of Aleksandrov’s theorem for convex 4-
polytopes”.
All this and more is presented with attention paid to the
shape and history of this growing part of mathematics and
with a care which brings accuracy to an area often plagued
by theorems which are only almost true.
Back to Main List
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Prismic tensigrids.

Hinrichs, Lowell A.
Structural Topology 1984, no. 9, 3–14.

In this paper the author studies symmetric rigid structures
in space built from struts and cables and so arranged that
just one strut meets each vertex. It is this last property
which makes these objects interesting sculptures—the viewer
wonders why they don’t collapse.
The regularity imposed is that the group G of symmetries act
transitively on the vertices of the structure. In consequence,
G acts transitively on the struts. The author uses a theorem
on the rigidity of general tensegrities due to B. Roth and
W. Whiteley to find all structures in which the cables are
partitioned into two G-orbits.
As is traditional for this journal, the illustrations are clear,
and invite the reader to build models.

Back to Main List
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A correspondence between scene analysis and

motions of frameworks.

Whiteley, Walter
Discrete Appl. Math. 9 (1984), no. 3, 269–295.

It is known that projections of a spherical polyhedron into a
plane correspond to a static stress on the projection. Here
a different correspondence is established between a plane
picture of a “scene” and a plate and bar framework in the
plane. This provides an equivalence between these two areas
of study. This also allows a correspondence between scenes
with occlusion and tensegrity frameworks where the linear
systems involve inequalities.

Back to Main List
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One-story buildings as tensegrity frameworks.

Chakravarty, N.; Holman, G.; McGuinness, S.; Recski, A.
Structural Topology No. 12 (1986), 11–18.
In this short, accessible paper the authors re-prove theorems
of the reviewer and H. Crapo on the bracing of plane grids
of squares and of one-story buildings.
They then generalize to allow cables and struts as bracing el-
ements. Thus, for example, a plane grid of squares is rigid if
and only if the directed bipartite graph describing the place-
ment of the struts and cables is strongly connected. This
result may also be found in a book by J. A. Baglivo and J.
E. Graver.
The proofs rely on the direct analysis of some simple systems
of equations rather than on the machinery (or language) of
matroid theory.

Back to Main List
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A Fuller explanation.

The synergetic geometry of R. Buckminster Fuller
Edmondson, Amy C.
Design Science Collection. A Pro Scientia Viva Title.
Birkhauser Boston, Inc., Boston, MA, 1987.

This book is a disciple’s affectionate tribute to R. Buckmin-
ster Fuller (1895–1983), “inventor, architect, engineer, and
philosopher”.
It begins with a portrait and a view of his most famous build-
ing: the great geodesic dome in Montreal which was built
in 1967 as the U.S. Pavilion. He was deeply interested in
Platonic and Archimedean polyhedra, especially the cuboc-
tahedron, which he quaintly renamed “vector equilibrium”.
The figures on page 115 illustrate the cuboctahedral numbers
1 +

∑n
f=1(10f 2 + 2) as clusters of congruent balls



41 Papers on Tensegrity

Highlights

Some Questions

Home Page

Title Page

JJ II

J I

Page 23 of 79

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Chapter 15 describes Fuller’s concept of “tensegrity”, the
most remarkable instance of which is a skeletal object con-
sisting of 30 rigid struts firmly held together by 90 threads.
It is symmetrical by the icosahedral group of rotations. The
60 ends of the 30 struts are the vertices of one of the two chi-
ral Archimedean solids, the snub dodecahedron. The threads
run along 90 of the 150 edges, namely the 60 sides of the 12
pentagonal faces and 30 shared by pairs of triangles. Nearly
parallel to those 30, and nearly three times as long, are 30
diagonals which are likewise reversed by the 30 half-turns
belonging to the icosahedral group. These 30 diagonals are
the positions for the 30 struts. The same chapter provides
a fuller explanation for the structure of “geodesic domes”,
based on tessellations of a sphere by 20T nearly congruent,
nearly equilateral triangles, where T = b2 + bc + c2, b and c
being nonnegative integers
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Page 265 shows the “Dymaxion map”, in which the whole
world is projected onto the faces of a regular icosahedron
which is then cut along certain edges and spread out flat.
He conceived this idea in 1943, simultaneously with Profes-
sor Irving Fisher of Yale. Fisher placed the North and South
poles at two opposite vertices, with the unhappy result that
some countries (such as Algeria) are “ripped apart” by an
edge separating two faces. “It took Fuller two years of ex-
perimenting to find an orientation in which all twelve icosa-
hedral vertices land in the ocean—an essential requirement
if land masses are not to be ripped apart.”
Reviewed by H. S. M. Coxeter

Back to Main List
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On immobile kinematic chains and a fallacious

matrix analysis.

Kuznetsov, E. N.
Trans. ASME J. Appl. Mech. 56 (1989), no. 1, 222–224.

T. Tarnai asked the following questions about pin jointed bar
frameworks: “(1) What criterion determines whether self-
stress stiffens an assembly which is both statically and kine-
matically indeterminate? and (2) How can matrix methods
be used to decide whether kinematical indeterminacy takes
the form of an infinitesimal or a finite mechanism?”
S. Pellegrino and C. R. Calladine attempted to answer these
questions.
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In the present paper the author points out, among other
things, that the analysis by Pellegrino and Calladine is at
the least inadequate because it fails to provide information
about whether a certain quadratic form is positive definite, in
order to detect when a certain potential function (associated
to the stress-strain characteristics on the members) is at a
local minimum. This is one very natural test to detect the
stability of a structure in a special position.
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In the reviewer’s opinion, part of the confusion comes from
not making the distinction between “pre-stress stability”,
where the second derivative test works for the potential func-
tion involved, and “second-order rigidity”, where second-
order terms are introduced and are compatible with the geo-
metric distance constraints. If a structure is pre-stress stable,
then it is second-order rigid, but not conversely. See a forth-
coming paper by the reviewer and W. Whiteley.

Back to Main List
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Rigidity and polarity. II. Weaving lines and

tensegrity frameworks.

Whiteley, Walter
Geom. Dedicata 30 (1989), no. 3, 255–279.

A weaving is a finite collection of straight lines in the plane,
where certain pairs of the lines are designated so that one
passes “over” or “under” the other at the crossing. A lifting
of a weaving is a corresponding collection of straight lines
in 3-space that projects orthogonally onto the given weaving
lines such that the crossings have the corresponding weav-
ing patterns. One kind of problem is to determine when a
weaving has a lifting.
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The author explores the question of what happens when a
configuration of weaving lines is polarized in the plane. Lines
of the weaving correspond to points, and crossings of the
weaving correspond to lines between corresponding points.
Surprisingly, the proper structure to consider for the polar
configuration is a tensegrity framework, which is a collec-
tion of points in the plane with certain pairs of those points
designated as either a “cable” or a “strut”. A strict in-
finitesimal flex of a tensegrity framework is the assignment
of a vector p′

i to each point pi of the tensegrity framework
such that (pi − pj)(p

′
i − p′

j) < 0 for (i, j) a cable, and
(pi−pj)(p

′
i−p′

j) > 0 for (i, j) a strut. This is a rather strong
form of nonrigidity for the tensegrity framework, where the
cables shorten and the struts lengthen. As a consequence of
the polarity, the author shows that a weaving has a strict
lifting, where none of the lifted lines intersect, if and only
if the corresponding polar tensegrity framework has a strict
infinitesimal flex.
The author also explores similar problems with “grillages,”
which are configurations of lines in 3-space, where certain
pairs are forced to intersect.
Back to Main List
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Duality between plane trusses and grillages.

Tarnai, T.
Internat. J. Solids Structures 25 (1989), no. 12, 1395–1409.

In the paper, projective plane duality, that is, a point-to-line,
line-to-point, incidence-to-incidence correspondence between
plane trusses and grillages of simple connection is treated.
By means of linear algebra it is proved that the rank of the
equilibrium matrix of plane trusses and grillages does not
change under projective transformations and polarities; con-
sequently the number of infinitesimal inextensional mecha-
nisms and the number of independent states of self-stress are
preserved under these transformations. The results obtained
are also applied to structures with unilateral constraints, and
by using several examples it is shown that plane tensegrity
trusses have projective dual counterparts among grillages
which can be physically modelled with popsicle sticks by
weaving.”

Back to Main List
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First-order infinitesimal mechanisms.

Calladine, C. R., Pellegrino, S.
Internat. J. Solids Structures 27 (1991), no. 4, 505–515.
This paper discusses the analytical conditions under which a
pin-jointed assembly, which has s independent states of self-
stress and m independent mechanisms, tightens up when its
mechanisms are excited. A matrix algorithm is set up to dis-
tinguish between first-order infinitesimal mechanisms (which
are associated with second-order changes of bar length) and
higher-order infinitesimal or finite mechanisms.
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It is shown that, in general, this analysis requires the com-
putation of s quadratic forms in m variables, which can be
easily computed from the states of self-stress and mechanisms
of the assembly. If any linear combination of these quadratic
forms is sign definite, then the mechanisms are first-order in-
finitesimal. An efficient and general algorithm to investigate
these quadratic forms is given. The calculations required are
illustrated for some simple examples. Many assemblies of
practical relevance admit a single state of self-stress (s = 1),
and in this case the algorithm proposed is straightforward
to implement. This work is relevant to the analysis and de-
sign of pre-stressed mechanisms, such as cable systems and
tensegrity frameworks.

Back to Main List
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One-story buildings as tensegrity frameworks II

Recski, Andras
Structural Topology No. 17 (1991), 43–52.
In a paper with the same title as this one, N. Chakravarti
et al. showed that the minimal number of diagonal cables
needed to rigidify a k × l one-story building is k + l − 1
(when k, l ≥ 2 and k + l ≥ 5). In this paper the author
shows which sets of that size do the job in two particular
interesting cases.
As usual, regard the cables as edges in the bipartite graph
K(A, B), where |A| = k and |B| = l. When the subgraph
corresponding to k + l − 1 bracing cables is not a tree the
cables rigidify the building if and only if k − l = 1 and the
subgraph is a directed circuit with 2 min(k, l) vertices.
When the cables are parallel they rigidify the grid if and
only if, for every proper subset X of A, |N(X)| > (k/l)|X|,
where N(X) denotes the set of those vertices in B adjacent
to at least one vertex in X . The proofs are straightforward.
The paper contains interesting examples.
Back to Main List
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One-story buildings as tensegrity frameworks.

III.

Recski, Andras; Schwaerzler, Werner
Discrete Appl. Math. 39 (1992), no. 2, 137–146.

The authors of Parts I and II showed that the minimal num-
ber of diagonal cables needed to rigidify a k × l one-story
building is k + l − 1 (when k, l ≥ 2 and k + l ≥ 5), and
showed which sets of that size do the job in two particular
interesting cases. In this paper the authors characterize the
minimum systems in the general case.
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As usual, regard the cables as forming a directed subgraph G
of the bipartite graph K(A, B), where |A| = k and |B| = l.
G has an edge from a ∈ A to b ∈ B just when there is
a cable between the northeast and southwest corners of the
corresponding room in the building. The edge goes the other
way when the cable joins the other two corners.
Suppose G is not connected. Then G is rigid if and
only if it has two asymmetric components each of which is
strongly connected. (If the components of G have vertex
sets A1, A2 ⊂ A and B1, B2 ⊂ B then these components are
asymmetric when |Ai| × l 6= |Bi| × k, i = 1, 2.)
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Suppose G is connected. An AB-path is a directed path
starting at some x ∈ A and ending at some y ∈ B. Let
N(X) be the set of endpoints of AB-paths starting in X ⊂
A. Similarly, define a BA-path and N(Y ). Then G is rigid
if and only if |N(X)|× k > |X|× l for all proper subsets X
of A or |N(Y )| × l > |Y | × k for all proper subsets Y of B.
The proof uses a generalization of a generalization of the
Koenig-Hall theorem on the existence of perfect matchings
in a bipartite graph.
This paper should mark the end of the sequence of papers
by Recski et al. on this subject.

Back to Main List



41 Papers on Tensegrity

Highlights

Some Questions

Home Page

Title Page

JJ II

J I

Page 37 of 79

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Applications of combinatorics to statics—a sec-

ond survey.

Recski, Andras
Discrete Math. 108 (1992), no. 1-3, 183–188.

Some recent results are presented concerning the algorithmic
aspects of 2-dimensional generic rigidity and 1-story build-
ings as tensegrity frameworks. Most of these results were
obtained after the completion of the first survey.

Back to Main List
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Rigidity.

Connelly, Robert
Handbook of convex geometry, Vol. A, B, 223–271, North-
Holland, Amsterdam, 1993.

This chapter surveys the intersection between rigidity and
convex geometry. The central result is Cauchy’s rigidity the-
orem (1813), which says: “Two convex polyhedra comprised
of the same number of equal similarly placed faces are su-
perposable or symmetric.” There are two main categories
for generalizations; one is in the category of polyhedra and
similar discrete objects while the other is in the category of
appropriate smooth surfaces. The author gives a very nice
and up-to-date survey of the former with an extensive list of
literature. A nice feature is that a comparison between the
two categories of generalizations is also given.
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The author begins by discussing Dehn’s (1916) infinitesimal
version of Cauchy’s theorem and Aleksandrov’s (1958) exten-
sion. Dehn’s theorem says: “Given a convex compact poly-
tope p in three-space with all faces triangles, if one forms
the associated bar-framework G(p) by taking the edges as
bars and vertices as joints, the G(p) is infinitesimally rigid.”
When not all faces of p are triangles and one triangulates p
by adding new vertices only on the edges of p, Aleksandrov
proved that the associated bar framework of the triangula-
tion remains infinitesimally rigid in three-space. The author
describes in great detail the various generalizations of these
two theorems by present-day authors:
In another direction, Dehn’s theorem and Aleksandrov’s the-
orem have also been generalized to higher dimensions. This
led to the proof of Barnette’s lower bound theorem for tri-
angulated convex polytopes and a new lower bound theorem
for nontriangulated convex polytopes.
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The relatively new concepts of second-order rigidity and pre-
stress stability and their connections with convex surfaces are
also discussed extensively in the final section. Other areas
covered include Gruenbaum and Shephard’s conjectures con-
cerning rigidity of certain tensegrity frameworks in the plane
as well as Maxwell-Cremona theory and spider webs.
There are many different concepts of rigidity. In the past
this has caused considerable confusion. The author gives
very clear definitions of various types of rigidity and their
relationships.

Back to Main List
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Globally rigid symmetric tensegrities

Connelly, R.; Terrell, M.
Structural Topology No. 21 (1995), 59–78.

L. A. Hinrichs defined a class of symmetric tensegrity frame-
works Pn(j, k), n = 3, 4, · · ·, and j, k = 1, 2, · · · , n − 1.
He called them prismic tensegrids. The authors remark
that these frameworks are never infinitesimally rigid. How-
ever, they prove that Pn(j, k) is globally rigid iff k = 1 or
k = n − 1. Since global rigidity implies rigidity, this also
shows that Pn(j, 1) and Pn(j, n − 1) are rigid. This is the
main result of the paper.
The authors also raise the question of the rigidity of Pn(j, k)
for other values j and k. Since the method used in this
paper does not apply, the authors also propose some possible
lines of attack. The proof of the main theorem uses some
general methods developed by Connelly and Connelly and
W. Whiteley

Back to Main List
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Graphs, digraphs, and the rigidity of grids.

Servatius, Brigitte
UMAP J. 16 (1995), no. 1, 43–69.

Here is pretty play with problems about the bracing of plane
grids of squares for undergraduates who know enough linear
algebra to be comfortable with the rank of a (simple) system
of linear equations.
After an algebraic prologue, graph theory assumes center
stage. No prerequisites are needed. The author gently intro-
duces bipartite graphs and shows how their connectedness is
equivalent to the rigidity of the braced grids to which they
correspond. Trees and cycles occur naturally when the plot
turns to minimal and minimally redundant bracings. Cables,
tensegrity and directed graphs follow in act three.
This 23-page paper contains 21 useful exercises together with
their solutions, notes for the instructor and suggestions for
further reading, all without seeming rushed. It’s an exposi-
tory tour de force.

Back to Main List
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Second-order rigidity and prestress stability for

tensegrity frameworks.

Connelly, Robert; Whiteley, Walter
SIAM J. Discrete Math. 9 (1996), no. 3, 453–491.

A tensegrity framework is one with cables, bars and struts.
The authors define two concepts of rigidity for such a
framework—prestress stability and second-order rigidity.
The concept of prestress stability is borrowed from struc-
tural engineering. The authors also exhibit a hierarchy of
rigidity—first-order rigidity implies prestress stability implies
second-order rigidity implies rigidity for any framework. A
series of examples also show that none of these implications
can be reversed.
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It is well known that first-order rigidity has a duality ex-
hibited in the equivalence of the so-called static rigidity and
infinitesimal rigidity. In this paper a duality is also developed
for second-order rigidity. Using this duality, the authors de-
velop a second-order stress test which states: A second-order
flex exists if and only if for every proper self-stress of the
framework the quadratic form it defines is nonpositive when
evaluated at the given first-order flex.
A convex b-c polygon is a framework in the plane with points
the vertices of a convex polygon, bars on the edges and cables
inside connecting certain pairs of vertices. Roth conjectured
that a b-c polygon is rigid if and only if it is first-order rigid.
Using the second-order stress test, the authors prove the con-
trapositive form of Roth’s conjecture in its full generality.
These results are the main contributions of the paper.

Back to Main List
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Controllable tensegrity, a new class of smart

structures

Skelton and Sultan
Smart structures and materials 1997: mathematics and con-
trol in smart structures (San Diego, CA), 166–177, Proc.
SPIE, 3039, SPIE, Bellingham, WA, 1997.

Back to Main List
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Tensegrities and rotating rings of tetrahedra: a

symmetry viewpoint of structural mechanics.

Guest, S. D.
Science into the next millennium: young scientists give their
visions of the future, Part II.
R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci.
358 (2000), no. 1765, 229–243.

Symmetry is a common attribute of both natural and en-
gineering structures. Despite this, the application of sym-
metry arguments to some of the basic concepts of struc-
tural mechanics is still a novelty. This paper shows some of
the insights into structural mechanics that can be obtained
through careful symmetry arguments, and demonstrates how
such arguments can provide a key to understanding the para-
doxical behaviour of some symmetric structures.

Back to Main List



41 Papers on Tensegrity

Highlights

Some Questions

Home Page

Title Page

JJ II

J I

Page 47 of 79

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Dynamics of the shell class of tensegrity struc-

tures.

Skelton, Pinaud, and Mingori,
Dynamics and control of structural and mechanical systems.
J. Franklin Inst. 338 (2001), no. 2-3, 255–320.

Back to Main List
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Initial shape-finding and modal analyses of cyclic

frustum tensegrity modules.

Nishimura, Murakami,
Comput. Methods Appl. Mech. Engrg. 190 (2001), no.
43-44, 5795–5818.
Initial equilibrium and modal analyses of Kenneth Snelson’s
cyclic frustum tensegrity modules with an arbitrary number
of stages are presented.
There are m(≥ 3) bars at each stage. The Maxwell number
of the modules is 6− 2m and is independent of the number
of stages in the axial direction.
Calladine’s relations reveal that there are 2−5m infinitesimal
mechanism modes. For multi-stage modules the necessary
conditions for axial assembly of one-stage modules with the
same internal element-forces are investigated.
One-stage modules with geometrically similar frustum mod-
ules satisfy the necessary conditions. For pre-stressed config-
urations, modal analyses were conducted to investigate the
mode shapes of infinitesimal mechanism modes.
Back to Main List
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Modelling and control of class NSP tensegrity

structures.

Kanchanasaratool, Williamson,
Internat. J. Control 75 (2002), no. 2, 123–139.

The method of constrained particle dynamics is used to de-
velop a dynamic model of order 12N for a general class of
tensegrity structures consisting of N compression members
(i.e. bars) and tensile members (i.e. cables).
This model is then used as the basis for the design of a
feedback control system which adjusts the lengths of the bars
to regulate the shape of the structure with respect to a given
equilibrium shape. A detailed design is provided for a 3-bar
structure.

Back to Main List
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Two-distance preserving functions.

Khamsemanan, Connelly,
Beitraege Algebra Geom. 43 (2002), no. 2, 557–564.

Let c, s be positive real numbers such that c/s <
√

5−1
2 , and

let f : En → Em, n ≥ 2, be any function such that for all
p, q ∈ En we have: (1) if |p− q| = c, then |f (p)− f (q)| ≤ c
and (2) if |p− q| = s, then |f (p)− f (q)| ≥ s.
As has been proved by K. Bezdek and R. Connelly the latter
conditions imply: for all p, q ∈ En necessarily |p − q| =
|f (p)− f (q)| (i.e., f should be a congruence).
The above result is an improvement of a previous result of F.
Rad, D. Andreescu and D. Vălcan, where the same theorem
has been proved under the more strict condition c/s < 1√

3.
In the paper under review a new proof of the Bezdek-
Connelly result is given which (to quote the authors) “uses
the mathematical software Maple and is independent of
Rado’s proof”.

Back to Main List
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A cellular tensegrity model to analyse the struc-

tural viscoelasticity of the cytoskeleton.

Caladas, et.al.
J. Theoret. Biol. 218 (2002), no. 2, 155–173.

Back to Main List
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Motion control of a tensegrity platform.

Kanchanasaratool, Williamson,
Commun. Inf. Syst. 2 (2002), no. 3, 299–324.

The paper begins by defining the general structure of a
tensegrity platform as a particular class II tensegrity struc-
ture in which at least half the nodes have only one bar at-
tached.
A passive nonlinear constrained particle dynamic (or mass-
spring) model is developed as the basis for designing a system
for controlling the position and orientation of the structure
along a prescribed path by adjusting the lengths of the bars.
A neural network “inversion problem” which seeks the (ap-
proximate) constant input signal to give a desired steady
state output response is formulated. The performance of two
path tracking algorithms (a quasi-static algorithm based on
an open loop piecewise constant input and a gain schedul-
ing algorithm based on an interpolation of “locally designed”
controllers) are examined.

Back to Main List
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Stability conjecture in the theory of tensegrity

structures.

Volokh,
Stability conjecture in the theory of tensegrity structures,
Volokh, 2003
Int. J. Struct. Stab. Dyn. 3 (2003), no. 1, 1–16.

The general problem of the stability of tensegrity structures
comprising struts and cables is formulated. It is conjectured
that any tensegrity system with totally tensioned cables is
stable independently of its topology, geometry and specific
magnitudes of member forces.

Back to Main List



41 Papers on Tensegrity

Highlights

Some Questions

Home Page

Title Page

JJ II

J I

Page 54 of 79

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Equilibrium conditions of a tensegrity structure.

Williamson, Skelton, Han,
Internat. J. Solids Structures 40 (2003), no. 23, 6347–6367.

This paper characterizes the necessary and sufficient condi-
tions for tensegrity equilibria. Static models of tensegrity
structures are reduced to linear algebra problems, after first
characterizing the problem in a vector space where direction
cosines are not needed.
This is possible by describing the components of all member
vectors. While our approach enlarges (by a factor of 3) the
vector space required to describe the problem, the advantage
of enlarging the vector space makes the mathematical struc-
ture of the problem amenable to linear algebra treatment.
Using the linear algebraic techniques, many variables are
eliminated from the final existence equations.

Back to Main List
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Tensegrities.

Heunen, van Leijenhorst, Dick
Nieuw Arch. Wiskd. (5) 5 (2004), no. 4, 279–283.
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Algebraic tensegrity form-finding.

Masic, Skelton, Gill,
Internat. J. Solids Structures 42 (2005), no. 16-17, 4833–
4858.

This paper concerns the form-finding problem for general
and symmetric tensegrity structures with shape constraints.
A number of different geometries are treated and several fun-
damental properties of tensegrity structures are identified
that simplify the form-finding problem.
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The concept of a tensegrity invariance (similarity) transfor-
mation is defined and it is shown that tensegrity equilibrium
is preserved under affine node position transformations.
This result provides the basis for a new tensegrity form-
finding tool.
The generality of the problem formulation makes it suit-
able for the automated generation of the equations and their
derivatives.
State-of-the-art numerical algorithms are applied to solve
several example problems.
Examples are given for tensegrity plates, shell-class symmet-
ric tensegrity structures and structures generated by apply-
ing similarity transformation.

Back to Main List
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Towards understanding tensegrity in cells.

Shen, Wolynes,
Phys. Rev. E (3) 72 (2005), no. 4, 041927, 11 pp. 92C37

The cytoskeleton is not an equilibrium structure. To de-
velop theoretical tools to investigate such nonequilibrium as-
semblies, we study a statistical physical model of motorized
spherical particles.
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Though simple, it captures some of the key nonequilibrium
features of the cytoskeletal networks. Variational solutions
of the many-body master equation for a set of motorized
particles accounts for their thermally induced Brownian mo-
tion as well as for the motorized kicking of the structural
elements.
These approximations yield stability limits for crystalline
phases and for frozen amorphous structures. The methods
allow one to compute the effects of nonequilibrium behavior
and adhesion (effective cross-linking) on the mechanical sta-
bility of localized phases as a function of density, adhesion
strength, and temperature.
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We find that nonequilibrium noise does not necessarily desta-
bilize mechanically organized structures.
The nonequilibrium forces strongly modulate the phase be-
havior and have a comparable effect as the adhesion due
to cross-linking. Modeling transitions such as these allows
the mechanical properties of the cytoskeleton to rapidly and
adaptively change. The present model provides a statisti-
cal mechanical underpinning for a tensegrity picture of the
cytoskeleton.

Back to Main List
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Structures in hyperbolic space.

Connelly,
Math. Appl. (N. Y.), 581, Springer, New York, 2006.

This is an overview of some of the similarities and differences
between structures such as frameworks and cabled tensegri-
ties in the hyperbolic plane and hyperbolic space on the one
hand and the Euclidean plane, the sphere and Euclidean
space on the other hand.
The emphasis is on the Cauchy rigidity theorem, Cauchy arm
lemma, Dehn theorem on infinitesimal rigidity, Pogorelov
correspondence, and Leapfrog lemma. Several conjectures
are posed.

Back to Main List
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Kinematic, static and dynamic analysis of a pla-

nar 2-DOF tensegrity mechanism.

Arsenault, Gosselin,
Mech. Mach. Theory 41 (2006), no. 9, 1072–1089.

Tensegrity mechanisms are lightweight and deployable and
can be accurately modeled. Consequently, they constitute an
interesting alternative to conventional mechanisms for some
applications.
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In this work, the kinematics, statics and dynamics of a planar
two-degree-of-freedom tensegrity mechanism are studied.
Solutions to the direct and inverse static problems are first
presented. Afterwards, the boundaries of the actuator and
Cartesian workspaces of the mechanism are computed.
The stiffness of the mechanism is then detailed for differ-
ent situations. Finally, a dynamic model is derived and a
preliminary control scheme is proposed.

Back to Main List
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Modeling virus self-assembly pathways: avoiding

dynamics using geometric constraint decomposi-

tion.

Sitharam, Agbandje-Mckenna,
J. Comput. Biol. 13 (2006), no. 6, 1232–1265 (electronic).

We develop a model for elucidating the assembly pathways
by which an icosahedral viral shell forms from 60 identical
constituent protein monomers.
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This poorly understood process is a remarkable example of
macromolecular self-assembly occurring in nature and pos-
sesses many features that are desirable while engineering self-
assembly at the nanoscale.
The model uses static geometric and tensegrity constraints to
represent the driving (weak) forces that cause a viral shell to
assemble and hold it together. The goal is to answer focused
questions about the structural properties of a successful as-
sembly pathway.
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Pathways and their properties are carefully defined and com-
puted using computational algebra and geometry, specifically
state-of-the-art concepts in geometric constraint decompo-
sition. The model is analyzable and refinable and avoids
expensive dynamics.
We show that it has a provably tractable and accurate com-
putational simulation and that its predictions are roughly
consistent with known information about viral shell assem-
bly. Justifications for mathematical and biochemical as-
sumptions are provided, and comparisons are drawn with
other virus assembly models.
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A method for more conclusive experimental validation in-
volving specific viruses is sketched.
Overall, the paper indicates a strong and direct, mutu-
ally beneficial interplay between (a) the concepts underly-
ing macromolecular assembly; and (b) a wide variety of es-
tablished as well as novel concepts from combinatorial and
computational algebra, geometry and algebraic complexity.
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Improving the DISPGB algorithm using the dis-

criminant ideal.

Manubens, Montes,
J. Symbolic Comput. 41 (2006), no. 11, 1245–1263.

Given a parametrised family of polynomial ideals, it is well
known that for different specialisations the Grbner bases may
look very different.
V. Weispfenning introduced for this problem the notion of
a comprehensive Gruebner basis which remains a Gruebner
basis under every specialisation, and provided an algorithm
for its construction. The DISPGB algorithm is a more effi-
cient alternative proposed by the second author.
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In the paper under review the authors present a new im-
proved version of the DISPGB algorithm using some recent
ideas of Weispfenning, in particular the discriminant ideal
distinguishing the different special cases. After a presenta-
tion of the underlying theory, the new algorithm is discussed
in detail. Finally, two concrete examples are studied, a sys-
tem from robotics and a system describing a tensegrity prob-
lem, and for some further benchmark problems a table with
results is given.

Back to Main List



41 Papers on Tensegrity

Highlights

Some Questions

Home Page

Title Page

JJ II

J I

Page 70 of 79

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

From graphs to tensegrity structures: geometric

and symbolic approaches.

de Guzman, Orden,
Publ. Mat. 50 (2006), no. 2, 279–299.
A tensegrity structure is a geometric configuration of points
and straight edges in Rd (typically d = 2, 3) such that the
whole structure is in a self-tensional equilibrium. The word
tensegrity comes from tension and integrity.
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The authors study the problem of determining a tenseg-
rity structure, in particular, the problem of building tenseg-
rity structures with a given underlying abstract graph G =
(V, E), in a given Rd, solving the following problems: decide
whether G can be the underlying graph of a tensegrity struc-
ture in Rd; and if a tensegrity with G is possible, characterize
the relative position of its vertices.
To solve these problems the authors look for decompositions
of tensegrities into basic instances, called atoms, by decom-
posing the graph G into the smallest graphs that can underlie
a tensegrity.



41 Papers on Tensegrity

Highlights

Some Questions

Home Page

Title Page

JJ II

J I

Page 72 of 79

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

To do that, they present two different approaches: (1) to
look at the geometric structure of the tensegrity (difficult for
complicated structures); and (2) to condense in a matrix the
information about the tensegrity (using tools from symbolic
computation).
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Stability conditions for tensegrity structures.

Zhang, Ohsaki,
Internat. J. Solids Structures 44 (2007), no. 11-12, 3875–
3886.
Back to Main List
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2. Highlights

Connelly 1980 If a tensegrity framework G(p) is infinites-
imally rigid in Rd, then it is rigid in Rd.

Connelly 1980 A tensegrity framework G(p) is infinitesi-
mally rigid in Rd iff it is statically rigid.
(Every equilibrium load can be resolved by a proper stress.)
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Roth and Whiteley, 1981 Let G(p) be a tensegrity
framework in Rd. Then G(p) is statically rigid in Rd if and
only if there is a proper self-stress that is non-zero on each
cable and strut, and G′(p) is statically rigid, where G′ is
obtained from G by replacing each member with a bar.



41 Papers on Tensegrity

Highlights

Some Questions

Home Page

Title Page

JJ II

J I

Page 76 of 79

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Connelly, 1982 Let G(p) be a tensegrity framework in the
plane where the vertices form a convex polygon, all the exter-
nal edges are cables, struts are the only other members, and
G(p) has a proper non-zero self-stress. Then G(mathbfp)
is globally rigid in Rd for all d ≥ 2.

Connelly, 1982 If a tensegrity framework G(p) is rigid in
Rd and G has at least one cable or strut, then G(p) has a
proper non-zero self-stress.

Crapo, Whiteley, 1982 Plane stresses and projective
polyhedra
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Connelly and Whiteley, 1990 Let G(p) be a rigid
tensegrity framework in the plane, where the vertices form a
convex polygon, all the external edges are bars, and cables
are the only other members, then G(p) is infinitesimally rigid
in the plane.
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Connelly and Whiteley, 1996
1st order rigidity

⇓
Prestress stability

⇓
2nd order rigidity

⇓
rigidity

for any framework.
Examples show that none of these implications are reversible.

The Stress test.
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3. Historic Questions

lost.pdf

lost.pdf

	41 Papers on Tensegrity
	Highlights
	Historic Questions

