
COMBINATORICS AND THE RIGIDITY OF FRAMEWORKS

BRIGITTE SERVATIUS

A wide variety of physical structures, e.g. scaffolding (rigid), or a DNA molecule
(non-rigid), may be modeled as a collection of rigid rods connected to one another by
idealized ball joints. For a given structure, the basic question that arises is whether
it is rigid and, if not, how to describe its motion. We would like to describe some
of the applications of combinatorics to this area.

By a framework we mean a graph G = (V,E) together with an embedding p
of V into Euclidean space. A motion of the framework is a motion of the vertices
which preserves the distance between adjacent vertices, and a framework is rigid if
the only motions which it admits arise from congruences. As an example, consider
a rectangle with one diagonal in the plane. This framework is clearly rigid. Notice
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Figure 1.

that if we consider the same framework embedded in 3-space, it is no longer rigid
since the diagonal rod acts as a hinge, so the rigidity of a framework depends upon
the dimension of the space in which it is embedded. By using the diagonal as a
hinge, we find two non-congruent planar frameworks with identical rod lengths and
adjacencies. We say that the rectangle with one diagonal is not strongly rigid. A
framework is strongly rigid if the underlying graph, together with specified edge
lengths, determines the congruence class of the framework. Asimow and Roth [2]
showed that the complete graphs are the only graphs that are (strongly) rigid in
all dimensions for all embeddings.

If we consider the initial velocities, p′
i, of the endpoints pi of a single edge (i, j)

under a continuous motion of a framework, then, to avoid compressing or extending
the edge, it must be true that the components of those velocities in the direction
parallel to the edge must be equal, i.e.

(1) (pi − pj) · (p′
i − p′

j) = 0,

A function assigning vectors to each vertex of the framework such that equation 1
is satisfied at each edge is called an infinitesimal motion. If the only infinitesimal
motions are trivial, that is, they arise from infinitesimal translations or rotations
of Rd, then we say that the framework is infinitesimally rigid. Infinitesimal rigidity
implies rigidity, see for example [7]. On the other hand, since not every infinitesimal
motion is realized as the initial velocities of an actual motion of the framework, a
rigid graph is not necessarily infinitesimally rigid, see Figure 2a. This framework
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Figure 2.

admits an infinitesimal motion which rotates the inner triangle about the intersec-
tion of the three lines extending the rods joining the two triangles, see Figure 2b,
while the outer triangle is held fixed, this infinitesimal motion is indicated by arrows
in Figure 2a. It is often easier to detect an infinitesimal motion of a framework by
looking for a parallel redrawing of the graph, Figure 2c, a dual formulation which
requires an infinitesimal motion of the vertices to preserve not the length but the
direction of the rods, leading to a set of conditions equivalent to Equation 1, see [26].

If the framework of Figure 2a is altered so that these lines do not all meet at a
point (including the point at infinity), then the framework is infinitesimally rigid.
We see that by altering slightly the positions of the vertices it is possible to change
the rigidity properties of the framework (even though the vertices are in general
position in R2). We call a framework generic if we can can “wiggle” the vertices a
little bit without altering any of its rigidity properties. Generic embeddings form
an open dense subset in the space of all embeddings. A graph G is called generically
rigid (in dimension d) if there is a generic embedding of G in Rd which is rigid.

Euler [12] conjectured in 1766 that the 1-skeleton of any triangulated polyhedral
surface in 3-space is rigid. In 1813, Cauchy [5] proved that Euler’s conjecture
holds for strictly convex polyhedra. Alexandrov [1], 1950, proved that “strictly”
could be dropped from the hypothesis of Cauchy’s theorem, and Gluck [13], in 1975,
proved that any triangulation of a (topological) sphere is generically rigid in 3-space.
1897 Bricard [4] found a non-rigid embedding of the 1-skeleton of an octahedron.
This was a quite astonishing example, but it does not disprove Euler’s conjecture,
since the 1-skeleton of the Bricard octahedron cannot be extended to a 2-skeleton,
because some triangles intersect. Bricard’s octahedron shows that the rigidity of a
framework depends both upon on the combinatorial structure of the graph, as well
as the geometry of the embedding of the vertices. Euler’s conjecture was settled in
1977 by Connelly [6], who found a flexible sphere. Of course Connelly’s surface is
non-convex and non-generic.

We consider now the complete graph (V,K) on V = {1, . . . , n}. Let p be a fixed
embedding of V into Rd. Equation 1 defines a system of linear equations, indexed
by the edges (i, j), in the variables p′

i. The matrix R(p) of this system is a real
n(n− 1)/2 by nd matrix and is called the rigidity matrix. A framework (V,E,p) is
infinitesimally rigid (in dimension d) iff it the submatrix of R(p) consisting of the
rows corresponding to E has rank dn−

(
d+1
2

)
.

In 1864 Maxwell [20] studied the rank of R(p) by looking at the null space of
R(p)∗, called the space of stresses, see [3, 8, 24, 25].

Linear independence of the rows of R(p) induces a matroid F(p) on K. Its re-
striction to E is called the infinitesimal rigidity matroid of the framework (V,E,p).
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If the embedding p is generic, then the infinitesimal rigidity matroid on the
complete graph on n vertices is denoted by Gd(n) and called the d–dimensional
generic rigidity matroid.

The rigidity of a framework is a property of algebraic geometry, while it’s in-
finitesimal rigidity belongs to the realm of linear algebra, and generic rigidity is
in turn a graph theoretic property. We now describe a more general combinato-
rial construction which comprises all of these concepts, first introduced by Graver
in [14].

Consider a matroid on the edge set of a complete graph on n vertices. If E is
a subset of edges of this complete graph, we denote the set of vertices which are
endpoints of edges in E by V (E) and K(V ) denotes the edge set of the complete
graph on the vertex set V . Let us call an edge set rigid if its closure is complete, i.e.
if 〈E〉 = K(V (E)). In order for this matroid to reflect rigidity properties of a graph
on n (or fewer) vertices embedded in Rd, its closure operator should, in addition
to the usual four axioms for a matroid closure operator, satisfy two rather obvious
conditions: [C5] If two edge sets have fewer than d vertices in common, then the
closure of their union should equal the union of their closures, since one can rotate
one edge set with respect to the other about an axis in d space which contains all
vertices of intersection. This motion changes the relative distance between any pair
of vertices whose components are endpoints of edges in different edge sets. [C6] If
two rigid sets intersect in d or more vertices, their union should be rigid.

In [14, 15] it is shown that, if p is general then F(p) is an abstract rigidity
matroid. Defining abstract rigidity matroids via the closure operator is a natural
approach because of the concept of an “implied” edge: if (i, j) lies in the span of E
in F(p), then every infinitesimal motion of (V,E,p) preserves the length of (i, j),
so the closure of E consists of all edges implied by E.

The axioms imply that an edge set E containing a vertex v of degree d or less
is independent if and only if E − star(v) is independent. This result allows us to
recursively build up independent sets: Start with a complete graph on d vertices (it
is independent and rigid it dimension d) and proceed to attach d–valent vertices, one
at a time. It follows immediately that each successive graph is both independent
and rigid, and we conclude that all d–dimensional abstract rigidity matroids on n
vertices have rank dn−

(
n+1
2

)
.

We also see that Kd+1 is always a cycle in a d-dimensional abstract rigidity
matroid, and the star of a vertex minus d − 1 of its edges is always a cocycle. In
fact, see [16], these two properties give an alternate definition of abstract rigidity
matroids.

One could define a more general rigidity theory for any matroid by first intro-
ducing, in addition to the underlying set of the matroid, a set of “vertices”, and
then linking the two sets by specifying a support function. Rigidity of a set can
then be defined by an appropriate operator on the support of the set.

For dimension 1, the six axioms determine a unique matroid, which must be
G1(n), and coincides with the well-known connectivity matroid.

By contrast, there are many non-isomorphic abstract rigidity matroids for di-
mension 2, in fact there exist 2-dimensional abstract rigidity matroids which do not
arise as infinitesimal rigidity matroids. The following theorem characterizes G2(n).

Theorem 1. Let A2 be a 2-dimensional abstract rigidity matroid on n vertices.
The following are equivalent:
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(1) A2 = G2(n);
(2) [Graver [14]] A2 has the 1-extendability property: an independent set on k

vertices can be extended to an independent set on k+1 vertices by subdivid-
ing an edge with a new vertex, and attaching that new vertex to any other
vertex;

(3) [Laman [18]] The independent sets of A2 are those sets which satisfy Laman’s
condition:

(2) |F | ≤ 2|V (F )| − 3 for all F ⊆ E,F 6= ∅;

(4) [Crapo [9]] The bases of A2 consist of those edge sets which are decomposable
into 3 trees, such that every vertex is covered twice, and no subset induces
a subgraph spanned by only 2 subtrees;

(5) All cycles of A2 are rigid;
(6) For any closed set E of A2 with cliques E1, . . . , Ek, r(E) = r(E1) + · · · +

r(Ek), where r is the rank function of A2;
(7) [Lovász and Yemini [19]] r(E) = min

∑k
i=1(2|V (Ei)| − 3), where the mini-

mum is taken over all collections {Ei} of nonempty sets such that E = ∪Ei.
(8) [Graver [14]] A2 is maximal among all 2-dimensional abstract rigidity ma-

troids.

Laman’s Theorem was proved in 1970 and it was this theorem that promoted the
use of matroids to attack rigidity questions. A nice new proof is given by Tay [23].

Crapo’s characterization is based on a theorem of Nash-Williams which was
first applied to rigidity by Lovász and Yemini (see also [22]) to yield a polynomial
algorithm, [11], to determine generic independence. Crapo’s three tree criterion
provides improvement. Lovász and Yemini also give a different algorithm based on
the submodularity of the rank function.

To date no combinatorial characterization is known for Gd(n) for d ≥ 3. The
obvious generalizations of conditions 2–8 in Theorem 1 fail to characterize Gd(n) for
d ≥ 4, see for example [21, 15]. In fact 3 and 5 fail already for d = 3: the “double
banana”, Figure 3 is a non-rigid cycle satisfying Laman’s condition for dimension 3,
as the reader may check. Reformulations of conditions 2 and 6 that may work in
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Figure 3. The double banana.

3-space are known respectively as Graver’s Conjecture and Dress’ Conjecture. It
is not known if these two conjectures are equivalent. The Maximal Conjecture
states that there exists a unique maximal abstract rigidity matroid in dimension 3,
and that it coincides with G3(n). The Maximal Conjecture implies both Graver’s
Conjecture and Dress’ Conjecture, see [15].
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Should the characterization problem be too frustrating to get hooked into re-
search in rigidity, you may want to settle the following question: Connelly can
show that if there are two realizations of the same graph, one in Rn and one in Rm,
non-congruent but with the same edge lengths, then there is a motion in Rm+n join-
ing them. If m = n = 2 then one might expect that there is such a motion already
in R3 (like in our first example of the rectangle with one diagonal) but Whitely has
a counterexample. In general, is n+m best possible? Connelly’s result links strong
rigidity with (infinitesimal) rigidity.

If this is still too hard for a start, here is an unsolved problem due to Connelly in
dimension 2: Can all 3-connected cycles of G2(n) be obtained from the tetrahedron
by a sequence of 1-extensions? Henneberg [17] gave a parallel construction for
independent sets.
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2è Série Tom 1, 26–38.

[6] R. Connelly, (1978). A counter example to the rigidity conjecture for polyhedra, Inst. Haut.
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