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The geometry of folding paper dolls

BRIGITTE SERVATIUS

When a parent sees a little girl sitting on the floor cutting paper dolls,
many thoughts may come to mind: ‘She’s keeping out of trouble’ or ‘She’s
making a mess’ or even ‘There go my tax returns’. The thought that should
have come to my parent’s mind, however, was ‘One day she’ll be a
mathematician’. My grandmother, who worked as a dressmaker, often
allowed my sister and me to use her razor sharp scissors on the strips of
leftover tracing paper. This paper is inspired by a notebook that I kept in
grade school when I ‘studied’ paper dolls, and the figures are based on dolls
found pressed between the pages.

The seven strip groups
Symmetry is an essential component of many traditionally female

handicrafts: lacework, embroidery, weaving, hair braiding to name a few.
The folding and cutting of paper dolls does not have the practical value of
these crafts, but still may be used to illustrate some of the important tools of
transformation geometry and crystallography. Japanese Origami, the
epitome of paper art, seems to have discovered complex symmetry only
recently [ 11.

Symmetry is here understood in the classical sense as being encoded by
a transformation group of isometries. Strictly speaking, a string of paper
dolls has very little symmetry, since dolls may be distinguished by their
distance from the ends of the strip, however, it is more practical
mathematically, and more consistent with artistic perception, to treat the
string of dolls as if it is part of an infinite strip of dolls, see Figure 1.

FIGURE 1 The classical paper doll pattern: pml1 = bdb

The isometries of the infinite strip are those isometries of the plane
which preserve the strip, to whit:

l Translation parallel to the strip: b + b

l Rotation by 180” with pole on the centreline: b l q

. Reflection in the centreline: i or in a line perpendicular to

the centreline: bid
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l A glide reflection along the centreline: b + p

The choice of the letter b to show the action of the transformation is not
accidental. The letter b has no symmetry in itself, and all four of its images
under strip isometries occur as letters. The collection of all images of a set
is called the orbit of the set. We can illustrate all the possible groups of
symmetries of the strip by showing the orbit of a suitably placed b. We will
also use these sequences to give us a handy mnemonic notation for these
groups, which we will use in preference to the standard (but abstruse)
international symbols given in parentheses. The international symbols have
their origins in crystallography, see [2].

bbb -

bdb -

bqb -

bqp -

bpb -

bbb- -
PPP

bdb- -
pqp

(pll1)  - cyclic, generated by a translation.
. . . b b b b b b b b b b b . . .

(pml1)  - infinite dihedral group, generated by two parallel
reflections perpendicular to the centreline.

. . . b d b d b d b d b d b . . .
(pll2) - infinite dihedral group, generated by two 180  rotations
with poles on the centreline.

. . . b q b q b q b q b q b . . .
(pma2) - infinite dihedral group, generated by a reflection
perpendicular to the centreline, and a rotation with pole on the
centreline.

. . . b q p d b q p d b q p d . . .
(pla1) - cyclic, generated by a glide reflection.

. . . b p b p b p b p b p b . . .

(plm1) - generated by a translation and the centreline reflection.

 ...  b b b b b b b b b b b . . .
   p p p p p p p p p p p . . .

(pmm2) - generated by the centreline reflection and two reflections

in lines perpendicular to the centreline.
.  . b d b d b d b d b d b . . .
.  . . p q p q p q p q p q p . . .

It is easy to see that these seven groups comprise all the symmetries of a
strip. bbb and bdb are the only sequences of equivalent b’s in which the top
edge of the strip is preserved (all b’s right side up), so g and z are the
only possibilities containing a reflection in the centerline. If there is no
centreline reflection, then the original b can be placed on the centreline and
the b’s form a simple sequence. If bbb is the sub-sequence of right-side up
bbb’s, then bqb and bpb are the two ways to shuffle the sequence bbb
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amongst itself upside down, while bqpd and bdpq, both equivalent to bqp,
are the two ways to shuffle bdb amongst itself upside down. To see that
these symmetries are geometrically distinct, the reader may verify that any
pair may be distinguished by testing whether each

l preserves +=,
l preserves the top edge,
l preserves orientation, and
l contains a centreline reflection.

For a careful proof, see [2].

Our use of the sequences of letters above illustrates an important concept
in geometric group theory, that of the fundamental region. If a group G acts
by isometries on a subset S of Euclidean space, a fundamental region of S is
any closed, simply connected region in which no interior point is fixed by an
element of the group, a closed topological disc of the same dimension as S,
which contains at least one element from each orbit of points in S, and such
that no two interior points belong to the same orbit. A nice explanation is
in [3].

As an example, consider the group of transformations of the plane
generated by perpendicular glide reflections along arrows A and B  in
Figure 2.

FIGURE 2 A fundamental region and its images

The portrait of Napoleon forms a fundamental region for this group of
transformations, which is indicated by the fact that Napoleon’s orbit tiles the
plane. If a group of isometries has a fundamental region, then the group is
said to act discretely, as contrasted with, say, the group of translations of a
line by rational distances. For the discrete symmetries of the strip the
fundamental regions can always be taken to be rectangles (boxes enclosing
each “b”); however more creative fundamental regions may be devised in
some cases. In general, the utility of the fundamental region is that its orbits
define a tiling of S, and that tiling may be used to study the action of the
group, see [4].
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bdb
The group bdb corresponds to the classic method of cutting paper dolls.

See Figure 3.

FIGURE 3 The classical paper doll pattern: bdb

The reason this works is that the parallel folds on the reflection lines
arrange the paper so that points belonging to the same orbit lie above one
another, hence any cutting preserves the orbits, hence also the symmetry.
Our task is to devise similar methods for the other strip symmetries.

If the dolls face forward, then it is best to cut half a doll in the
fundamental region, see Figure 1. As long as a strip of paper is left
connecting the left and right edges, the pattern is connected.

bbb
The most direct way of producing dolls with only translation symmetry

is to roll the strip of paper into a cylinder, hold it closed temporarily with
clips or tape, cut a doll from the cylinder, and unroll. The paper making one
circuit of the cylinder is the fundamental region of the strip. See Figure 4.

FIGURE 4 Translation by rolling: bbb

bdb
and bbb

PqP PPP
These two cases can easily be obtained by first making a horizontal fold

along the length of the strip, and proceeding as for bdb and bbb. See
Figures 5 and 6.

bdb
FIGURE 5 A pattern with centreline reflection: -

P9P
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bbb
FIGURE 6 A pattern with centreline reflection: -

PPP

bqb
The group bqb is generated by 180” rotations, with poles equally spaced

along the centerline, which presents a difficulty for paper folding since a
180” rotation cannot be directly achieved without disconnecting the paper.
An indirect method is to use the fact that the product of two perpendicular
plane reflections is a 180” rotation, and fold the strip as in Figure 7 into an

FIGURE 7 Folding gives 180’ rotations

irregular hexagon, labelled A, with two right angles. Care must be taken,
however, since this hexagon is not the fundamental region of the strip group.
A true fundamental region consists of regions A, B and C. Regions B and C,
however, are systematically folded inside the hexagon, so cutting a doll out
of the hexagon and unfolding will yield a strip with symmetry bqb, but the
dolls may have additions, see Figure 8, which can disturb the intended

FIGURE 8 Dolls and partial dolls

design. (This is not a problem if you simply want abstract strip art.)
Another problem is that it is possible to disconnect the strip inadvertently,
even though the doll touches all six sides of the hexagon, as in Figure 9.

FIGURE 9 Disconnected dolls
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You can ensure that the dolls are held together by having them touch the
two rotation poles. Another disadvantage of this technique is that the dolls
produced must be wider than they are tall. To avoid this problem, one can

FIGURE 10 A practical solution to bqb

pre-cut the strip as in Figure 10, and fold only within the small attaching
squares. Of course, the pre-cuts are an example of ‘g and so are easy to
produce.

FIGURE 11 Results of method for bqb

bqp
The group bqp is generated by an alternating sequence of reflections and

rotations, so we may use a combination of the techniques for bdb and bqb,
see Figure 12.

FIGURE 12 Method for bqp

bpb
The group bpb is generated by a single glide reflection along the

centreline. The easiest method of achieving such a glide reflection is to roll
the strip lengthwise, as in bbb, except that, to achieve the reflection, the
strip must be rolled into a Mobius band. Twisting the band as tightly as
possible, see Figure 13, we get, in the limit, the strip folded into an

FIGURE 13 Cut on a M6bius Strip
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equilateral triangle. Since this is the limiting case, any dolls made from
cutting the Mobius strip and unrolling will have height to width ratio less
than fi/ 3 - rather wide even for dolls with hoop skirts.

You can cut dolls directly on the limiting triangle, as in Figure 14. The

FIGURE 14 Three ballerinas to one fundamental region

unfolded strip will have symmetry bpb, but the symmetry acts on sets of
three ballerinas, since three triangles make up the Mobius band, and hence
the fundamental region.

A different technique that allows you to make taller dolls is to fold the
strip to achieve a glide reflection, and then roll it into an ordinary cylinder.
The product of a 180  rotation and a reflection not passing through the pole
is a glide reflection in a direction perpendicular to the reflecting line:

=7-p-

We have seen how to approximate 180  rotations, so glide reflections
can be approximated by folding the strip as in Figure 15, with or without

FIGURE 15 Folding to get bpb

precuts, and then rolling the strip into an ordinary cylinder such that the
folded portions match up.

FIGURE 16 Better method for bpb

Subgroups
If you cut so that the fundamental region itself has non-trivial symmetry,

then the symmetry exhibited by the unfolded strip may be larger than
expected. This should be kept in mind when performing the more
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complicated constructions, since it is rather disappointing to end up with a
strip that could have been more easily (and better) done as an ordinary bdb.
How internal symmetries affect the strip group is really a question of which
strip groups occur as subgroups of which others. This is a nice exercise I
leave to you and your daughters.

Another aspect that touches on subgroups arises when the dolls are
coloured. Instead of colouring all the dolls identically, one can also vary the
colours symmetrically, that is, so that each symmetry induces a permutation
of the colours. For instance, if the dolls of bbb have dresses coloured red
and blue, alternating, then that colouring is symmetric. Symmetric
colourings can be found by looking for normal subgroups of the symmetry
group, see [5].

As a final word, I leave you with this puzzle. We know that groups
generated by reflections are in general non-commutative, since two distinct
reflections commute if and only if the reflecting lines are orthogonal. On
the other hand, in the folding instructions for bpb we have not specified in
which order the folds occur, and, indeed, the order of folding doesn’t seem
to matter. Or does it?
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Wet or what?
The Sympatex Comfort Membrane allows perspiration to evaporate to the

outside. At the same time it acts as an impenetrable barrier to rain and droplets of
water which are infinitely larger than water vapour molecules. This high-tech active-
breathing effect keeps you dry and comfortable, whatever the weather.

Sent in by Ian Cook who says ‘I’m a bit worried that, although being “dry and
comfortable”, there is a prospect of being hit on the head by an “infinitely large”
raindrop! As a matter of interest, the French, German and Italian versions, all say
“millions of times larger”, which is a bit more sensible.’


