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Summary. We demonstrate the use of auxiliary (or latent) variables for sampling non-standard 
densities which arise in the context of the Bayesian analysis of non-conjugate and hierarchical models 
by using a Gibbs sampler. Their strategic use can result in a Gibbs sampler having easily sampled full 
conditionals. We propose such a procedure to simplify or speed up the Markov chain Monte Carlo 
algorithm. The strength of this approach lies in its generality and its ease of implementation. The aim of 
the paper, therefore, is to provide an alternative sampling algorithm to rejection-based methods and 
other sampling approaches such as the Metropolis-Hastings algorithm. 
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1. Introduction 

Markov chain Monte Carlo (MCMC) methods (Smith and Roberts, 1993; Tierney, 1994) 
allow Bayesian inference for highly complex models in which realistic distributional 
assumptions can be made. The Gibbs sampler, the most common of the MCMC algorithms, 
can often be difficult to implement, however, because the required conditional distributions 
assume awkward forms. In this case the practitioner may turn to the Metropolis-Hastings 
algorithm; see, for example, Metropolis et al. (1953), Hastings (1970) and Tierney (1994). 
Unfortunately, these algorithms may be difficult to set up and in particular may require 
'tuning' to achieve satisfactory performance (Bennett et al., 1996; Chib and Greenberg, 1995). 
Alternatively 'black box' random variate generation techniques such as the rejection algo- 
rithm (Devroye, 1986), adaptive rejection sampling for log-concave densities (Gilks and Wild, 
1992) or the ratio-of-uniforms method (Wakefield et al., 1991) may be used. The use of 
such techniques may be daunting to those who are unfamiliar with their use, however, since 
they also frequently require tuning to provide reliable and efficient algorithms. In this paper 
we discuss a novel approach which, after the introduction of strategic auxiliary (or latent) 
variables, results in a Gibbs sampler having a set of easily sampled 'standard' full conditionals. 
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Suppose that the required conditional distribution for a random variable X is denoted f. 
The basic idea is to introduce a latent variable U, to construct the joint density of U and X, 
with marginal density for X given by f, and then to extend the Gibbs sampler to include the 
extra full conditional for U. We demonstrate that in many cases it is possible to introduce a 
latent variable so that all full conditionals are standard and can be sampled directly. This is 
obviously appealing, provided that there is no dramatic loss in efficiency compared with the 
original chain. 

For a historical overview of Markov chain methods and the use of latent (auxiliary) vari- 
ables the reader is referred to Besag and Green (1993). In particular, our approach develops 
the original idea introduced by Edwards and Sokal (1988) and highlighted in section 5 
of Besag and Green (1993). Recent progress with auxiliary variables is reported in Higdon 
(1998) and references therein. 

The paper is organized as follows. In the next section, we develop the theory underlying the 
new algorithm. In particular, we show that our method improves on a Metropolis-Hastings 
independence chain. In Section 3 we discuss strategies for choosing latent variables and 
in Section 4 we implement the approach for Bayesian non-conjugate models. Section 5 
considers hierarchical models, with Section 5.1 dealing with generalized linear mixed models 
and Section 5.2 with non-linear mixed models. Section 6 contains a numerical example, 
followed by a concluding discussion in Section 7. 

2. Preliminaries 

The main result on which the algorithm developed in this paper depends is given in the 
following theorem. 

Theorem 1. Suppose that we wish to generate random variates from a density f given by 

N 

f(x) cx ,(X) H li(x), 
i=1 

where 7r is a density of known form and the li are non-negative invertible functions (not 
necessarily densities), i.e. if li(x) > u then it is possible to obtain the set Al4 = {x: l(x) > u}. 
Then a Gibbs sampler for generating random variates from f exists where all except one of 
the full conditionals are uniform densities, and the remaining full conditional is a truncated 
version of 7r. 

Proof. We introduce the latent variables U= (U,..., UN), with each Ui defined on 
(0, oo), such that the joint density with X is given by 

N 
f(x, U], .. ., UN) OC ir(X) H I{ui < li(x)}. 

i=1 

Clearly the marginal density for X is f(x). A Gibbs sampler can now be implemented with 
the full conditionals for each Ui being U{O, li(x)} where U(a, b) denotes the uniform den- 
sity on the interval (a, b). The full conditional for X is given by 7r restricted to the set 
All = {x: l4(x) > ui, i = 1, ... , N}. 

The decomposition appearing in the theorem is very similar to an expression appearing in 
Besag and Green (1993), section 5. However, they did not mention the significant advantages 
that an invertible li leads to. They stated that, 'When dealing with more complicated models, 
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direct simulation from f(xlu) is unlikely to be available' (our italics). As a consequence, they 
proposed that sampling from 7r restricted to the set A,, may be achieved by sampling 
repeatedly from 7r until the sample falls in All. Although this method works in principle it will be 
inefficient in many situations. Our aim is to demonstrate that we can introduce latent variables 
in complex models in such a way that direct simulation from f(xlu) is achieved. The class of 
densities having the appropriate decomposition seems to be large, and specifically, in the 
context of Bayesian models, the decomposition stated in theorem 1 can be readily achieved. 

Consider the density given byf(x) cx 1(x) 7r(x) and suppose that it is not possible to sample 
directly from f We assume that 7r is a density. The general idea is to introduce a latent 
variable U, defined on the interval (0, oo), or more strictly the interval (0, 1(x)) where x 
maximizes 1( ), and define the joint density with X by 

f(x, u) cx I{u < l(x)} r(x). 

The full conditional for U is U{O, I(x)}, and the full conditional for X is 7r, restricted to the set 
All = {x: 1(x) > u}. The decomposition f(x) cx 1(x) 7r(x) is not unique, and we can exploit this 
fact when constructing the joint density containing the latent variable. 

We now show that this approach is more efficient than a particular independence 
Metropolis-Hastings chain. The Metropolis-Hastings algorithm is a Markovian scheme 
which may be used for obtaining samples from the posterior f(x) cx 1(x) 7r(x). Consider a 
specific version of this algorithm that uses 7r(-) as the proposal and let the sampled point 
be denoted x and the current point be x('). This point is accepted with probability 
min{1, lGQ)/l(x('0)} and this condition is tested by sampling, independently of x, a uniform 
variate u. Essentially if l(x)/l(x('0) > u then x('+') = x; otherwise x(t+') - x(t). The chain either 
'moves on' or 'stays where it is'. The convention is that x~ is sampled first, followed by u. 
Suppose that we reverse this and sample u first. To move on we need to sample xc from 7r(.) 
such that l(x)/l(x('0) > u. Suppose, therefore, that we sample x from 7r(-) restricted to the set 
Al,(t) = {x: I(x) > u l(x('0)}. In this case, the chain will always move on. In fact, we have just 
described a Gibbs sampler with standard full conditionals, leading to the Markovian scheme 
for generating {x(')} given by x('+ 7r(.) restricted to the set Al,(t) = {x: 1(x) > u1(x('))1, 
where u is U(O, 1). 

If X is multidimensional, and it is not possible to obtain the multivariate set Al,, then a 
simplification is to sample fromf(xlu) by sampling fromf(xklx-k, u), for k = 1, . . ., p, where 
p is the dimension of X. This would involve sampling from lr(xk Ixk) restricted to the set 

I' = {Xk: l(Xk, Xk)> U}. In this case it is only required that lk(xk) = l(Xk, Xk), given xk, be 
invertible for all k. The usefulness of this approach is demonstrated for non-linear mixed 
models in Section 5.2. 

3. Choosing the latent variable(s) 

In this section we discuss ways of introducing latent variables, other than the direct approach 
involving a uniform random variable outlined in theorem 1. Let us consider the non- 
conjugate case 

f(x) cx l(x) ir(x), 

where we assume that we can sample from truncated versions of 7r. In all the examples in this 
section we are not claiming that the 'best' way to sample fromf is by using MCMC and latent 
variables; we are merely using these cases to illustrate the basic ideas of our approach. 
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3. 1. Example 1: 1(x) = exp{-exp(x)) I(-oo < x < oo) 
We wish to define a joint density in terms of X and a latent variable so that the marginal 
distribution for X corresponds to f(.). The obvious way to achieve this here is via the latent 
variable u defined through 

f(x, u) oc I4O < u < exp{- exp(x)}] 7r(x). 

Alternatively, we may introduce the variable V whose joint distribution with X is given by 

f(x, v) ox exp(-v) I{v > exp(x)} 7r(x). 

The particular choice of latent variable depends on the context. The method works because 
1(x) < 1 for all x and hence - log{l(x)} > 0. In general, if 1(x) < M then we can use l*(x) < 1, 
where l*(x) = 1(x)/M. The conditional distributions for the second suggested choice are given 
by 

f(vjx) cx exp(-v) I{v > exp(x)} 

and 

f(xlv) oc 7r(x) I{x < log(v)}. 

To perform an iteration of the Gibbs sampler we can take v = exp(x) + e, where e is from the 
exponential distribution with mean 1 and x~ is the current state of the chain. So the truncation 
set for X becomes {x: x < log{exp(x~) + ell. 

3.2. Example 2: 1(x) = x'"(1 + x)-n I(x > 0), ?m < n, and 7r(x) is a gamma distribution 
with shape and scale parameters equal to 1 
If we use I{u < (1 + x)-'1} and take x"1 into the prior, then we have the joint density 

f(x, u) ac I{u < (1 + x)'1} tIr*(x), 

where 7r* is the gamma distribution with mean m + 1 and scale parameter 1. The conditional 
distributions are then given by 

f(ulx) = U{O, (1 + x)'`} 

and 

f(xlu) oc 7r*(x)I(x < l/ul '- 1). 

It is of interest to see how the truncation set for X depends on x. We can generate log(u) 
--e - n log(l + x) and so the conditional distribution for X can be written as 

f(xIx, e) oc x"1 exp(-x) I{x < (1 + x) exp(e/n) - 1}. 

There are two considerations here. The size of m will determine the efficiency of sampling the 
truncated gamma distribution and n will control the size of the truncation set for X, but note 
that the 'minimum' set is {x: x < x}. If m is very large, and the sampling of the truncated 
gamma distribution becomes inefficient, then an alternative strategy is to introduce two latent 
variables based on 11(x) = x1t and 1,(x) = (1 + x)-'1. The full conditionals are given by 

f(ulx) = U0, lI(x)}, 
f(vlx) = U{O, Iv(x)} 



Bayesian Non-conjugate and Hierarchical Models 335 

and 

f(xlu, v) oc exp(-x) I(U/11?1 < x < V-1I -1). 

The full conditional for X can be written as 

f(xl&x, el, e2) oc exp(-x) I{x exp(-el /m) < x < (1 + xc) exp(e2/n)-1 }, 
where el and e, are independent exponential random variates with mean 1. This chain avoids 
the need to sample a truncated gamma distribution, but at the expense of an extra latent 
variable. The effect of this extra latent variable is evident from the two truncation sets one 
is obviously smaller than the other. Problems of high autocorrelation will be encountered 
with the second chain if both m and n are large, which is clear from the truncation set for X. 

If we have 1(x) = exp(mx){l + exp(x)-'1 and 7r(.) is normal, for example, then a similar 
approach can be taken. 

3.3. Example 3: I(x) = ax I(x > 0) with a > Q 
Here we introduce the latent variable u via I(u < ax). The truncation set depends on whether 
a < 1 or a > 1. If a < 1 the truncation set is given by (0, log(u)/ log(a)) and, if a > 1, by 
(log(u)/ log(a), oo). 

These examples provide a brief summary of what is to follow. The selection of the appropriate 
latent variable(s) is usually self-evident but, in some cases, some thought may be required. 

4. Bayesian non-conjugate models 

In this section we implement the latent variable approach to sampling from posterior 
distributions arising from Bayesian non-conjugate models. 

4.1. Example 4: Poisson-log-normal model 
Suppose that we observe a random non-negative integer r from a Poisson distribution with 
parameter exp(X). Without loss of generality we assume that the prior for X is N( 10, 1). The 
posterior density is then given by 

f(x) oc exp{Tx - exp(x)} exp(-0.5x2). 

We notice that the exp(rx)-term can be absorbed into the prior and, therefore, following 
example 1, we introduce the latent variable U, defined on the interval (0, oo), such that the 
joint density with X is given by 

f(x, u) cx exp(-u) I{u > exp(x)} exp{-0.5(x2 -2rx), 

which leads to conditional densities given by 

f(ulx) oc exp(-u) I{u > exp(x)} 

and 

f(xlu) oc exp{-0.5(x - T)2j I{x < log(u)}, 

a truncated N(.IT, 1) density. See Devroye (1986) and Robert (1995) for methods for 
sampling from a truncated normal density. 
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4.2. Example 5: Bernoulli-logistic regression model 
Here we consider a Bernoulli logistic regression model for which wi - Bernoulli(pi) where 
Pi-l = 1 + exp(-u - xzi) and zi is a known explanatory variable. We assume for simplicity 
that ,u is known. We have 

wil[X = x], zi - Bernoulli[{l + exp(-- i = 1, .z., n, 

with, without loss of generality, X- N(. 10, 1) as the prior. The posterior density for X is 
given by 

ti 

f(x) oc exp(-0.5x2) H l1i(x) l9i(x), 
i=1 

where 

11i(x) = {1 + exp(-,u - xzi)-vi 

and 

= {1 + exp(u + xzi)}1l. 

Using the standard approach, outlined in theorem 1, we introduce the latent variables 
U = (U1, .. ., U,) and V = (VI, .. ., VJ), such that their joint density with X is given by 

f(x, u, v) ox exp(-0.5x2) HI I{ui < 1i(x), vi < 12i(x)} 
i=1 

The full conditional densitiesf(uilu-j, v, x) andf(vilv_i, u, x) are both uniform: 

f(uilu_i V, x) = U{O, 11i(x)} 

and 

f(viIv, iU, X) = U{O, 12i(X)}. 

Let S = {i: wi = 1} n {i: zi :A 0} and JZ = {i: wi = O} n {i: zi #A 01. Then 

f(xlu, v) ox exp(-0.5x2) I(x E A,J), 

where A ,= (maxiS {ai}, mini,1{bi}), ai={log(1/ui-1)- }/zi and bi = {log(1/vi-1) 
- u}/zi. Note that if S = 0 then we replace maxi,s{ai} by -oo and if 7Z = 0 then we 
replace mini,R{bi} by oo. 

4.3. Example 6: Weibull proportional hazards model 
The Weibull proportional hazards model is popular for modelling censored survival time 
data. The hazard function for the ith individual is given by 

Ai(t) = Ao(t) exp(zi,f), 

where A = (315 ..., 3P) is a vector of unknown parameters and Ao(t) is the base-line hazard. 
The Weibull model arises when Ao(t) = at'- for some unknown a > 0. The conditional 
posterior distribution for ,3, given a and taking a normal multivariate normal prior for f, is 
given by 
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fG3Iot) cx H exp{zifl8E - ti exp(zfi,)} exp{-O.5(/3-)'- (-)} 
i=l 

where 8i = 1 indicates that ti is an uncensored observation, and 8i = 0 otherwise. Here, 
following example 1, we introduce the latent variable U = (U1, . . ., U,) such that the joint 
density with 3 is given by 

ti 

f(3, uloa) cx Hl exp(-ui) I{ui > t' exp(zi/3)} exp{-0.5(/3 - u)'/- ,u) + v/3}, 
i~=l 

where v= ' t_ zi6i has been absorbed into the prior. The full conditional distributions for 
each of the ui are independent exponential distributions with unit mean, restricted to the sets 
(t' exp(zi,f), oo). Sampling from fOk 1lp-k, u, a) requires 

l= {3k: /3k <mm {m'i t i k 

and so involves sampling a normal distribution, truncated to A k . The full conditional for a, 
with prior 7r(a) = constant (Dellaportas and Smith, 1993), is given by 

aXFI1 ti) I[max { og(ui) -f < a < min log(ui) -zif3 , 

where h is the number of uncensored observations. We can sample this density via the 
introduction of a latent variable V and define the joint density with a by 

f(v, a) cx a(R I{v < (! ti7} I(A < a < A+), 

where A- and A+ are the bounds appearing in the full conditional for a. It is now seen that 
both f(vlIa) and f(alIv) are of standard form and can be sampled by using uniform random 
variables; see example 3. 

5. Bayesian hierarchical models 

Hierarchical models are relevant when the observed variability in the data on a number of 
units can be conveniently partitioned, in the simple two-stage model, into within- and 
between-unit components. At the first stage of the hierarchy observations from a particular 
unit are modelled, whereas at the second stage of the hierarchy between-unit differences are 
modelled. We consider both 

(a) generalized linear mixed models and 
(b) non-linear mixed models. 

We concentrate on that situation in which the second-stage distribution is specified 
parametrically, typically using normal or Student's t-distributions. 

5.1. Generalized linear mixed models 
5.1.1. The model 
Given {bi}, a set of q-vector random effects, the observations yi, i = 1, . . ., n, are condi- 
tionally independent from the exponential family of distributions with mean h(wi/3 + zibi), 
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where h(.) is a non-negative invertible function, i.e. g = hV exists, wi is a p-vector of 
explanatory variables, ,3 a p-vector of unknown parameters and zi a q-vector of explanatory 
variables, for the ith observation. The conditional variances are given by 

var(yilbi) = i v{E(yiIbi)} 

where v is a known variance function and b, if it is not equal to 1, is an unknown dispersion 
parameter. The bi are assumed to be independent and identically distributed (IID) from the 
multivariate normal distribution with mean 0 and covariance matrix A-1. Within a Bayesian 
framework conjugate prior distributions are assigned to the parameters , 3 and A. The prior 
for A is typically an inverse gamma distribution, the prior for 3 a multivariate normal prior 
N( lii, E) and the prior for A is a gamma or Wishart prior, depending on whether it is uni- 
variate or multivariate. 

5.1.2. The algorithm 
Here we present a general algorithm for sampling the conditional distributions of the 
generalized linear mixed model. The full conditional distribution for 3 is given by 

fl3Ib) cx exp [ {yiwi3 - h(wi/3 + zibi)}] N(31u, Y). 

In this form the distribution is not of standard type and so cannot easily be sampled 
directly. We could absorb the Ei yiwi3-term into the prior and then introduce a single latent 
variable. In general, however, this may not be the best strategy; see the discussion of 
example 2. 

We proceed by introducing the latent variables U = (Ul, . ., U,J) and V = (VI, . ., Vl) 
such that the joint (full conditional) distribution with 3 is given by 

f(3, u, vlb) oX (H I[u1 < exp(yiwi/3), vi < exp{-h(wi/3 + zibi)}]) N(j31u, E). 

Clearly the marginal distribution for 3 is as required. Some simple algebra gives the following 
full conditional distributions for each 3k, k = 1, . . ., p: 

fl(3k) ax N(,3k- pk, I /ekk) I(ak < Ok < CA) 

where 

AT = [ Z (/31 - [LI)e1k/ekk, 
l#k 

elk is the lkth element of E-1, the set (ak, Ck) is obtained via the inequalities yiwif3 > log(ui) and 
h(wi/3 + zibi) < -log(vi) for i = 1, . . ., n. 

The 'new' Gibbs sampler includes the sampling of the full conditional distributions for u 
and v within each iteration. These are easily seen to be uniform distributions. The full 
conditional distribution for bi is given by 

f(bilu, v, 3) oc I[ui < exp(yizibi), vi < exp{-h(wi3 + zibi)}] N(bilO, Q) 

which, as with the full conditional for /, will lead to a truncated normal distribution. 
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5.1.3. Example 7. random effects Poisson model 
Here we consider the random effects Poisson model given by 

yil0i - Poisson{exp(Oi)} 

0i = wi3 + bi, 

bi - N(O, A-1) 

Priors for 3 and A are taken as in Section 5.1.1. The joint probability distribution of 3, b and 
A is given by 

f(3, b, A) o exp[ {yii - exp(0i) - O.5bi A] A"2 /7(A 3 

Here we introduce the latent variables U = (Ui, . ., U,J) and V = (VI, ., VJ) such that the 
joint distribution with 3, b and A is given by 

f(:, b, A, u, v) ox At'2 ({3, A) [ exp(-vi) I{ui < exp(-yi0i), vi > exp(0i)} exp(-O.5bi A)]. 

The full conditional distribution for 3k is given by 

f(/k1-k, b, A, U, V) X 7wGkI0-k) I(3k E Bk), 

where Bk is the set 

maxr aki Cki .in aki Cki 
( vki<O { Wki Wki W'ki>0 { Wki Wki }) 

where 

aki = log(vi) -E w1i31 -bi 
lk 

and 

Cki = -Yi7 log(ui) - E w1i31 - bi. 
lk 

The full conditional distribution for bi is 

f(bil3, A, u, v) oc exp(-0.5b2A) I(bi E Ai), 

where Ai is the set 

o min { log(vi) W ZkiW3k, -Y log(uY ) - Wki/k}). 

The full conditional distributions for the latent variables are given by 

f(uil/3, b, A) x I{ui < exp(-yi0i)}, 

f(vil/3, b, A) o exp(-vi) I{vi > exp(0i)} 

and the full conditional for A is 
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f(AI,3, b, u, v) ax An/2 exp( - 0.5A zb2i) r(A). 

Only minor modifications are required for the case when yi = 0. 

5.2. Non-linear mixed models 
5.2.1. The model 
In the following let i index individuals and j index observations within individuals with 
i= 1, ..., n, = 1, ..., ni and N = Ei ni. Let yij represent the observation. The conditional 
probability model for the observations is given by 

Yij I i, a2- N{yi1Ig(Oi, xij), C2 }, 

where Oi is the random effect associated with the ith individual, xij an explanatory variable for 
the ijth observation and g a known non-linear mean response function. We shall write 
g(Oi, xi;) as gij(Oi). The 0i are assumed to be normally distributed with mean ,u and variance- 
covariance matrix E. Here a, p, and E are the population parameters. Conjugate priors are 
assigned to these parameters in a manner described in Wakefield et al. (1994). As a con- 
sequence the conditional distributions for each of these parameters is of known form. The 
problem with implementing a Gibbs sampler is with the conditional for each of the Oi. The 
conditional density for Oi is given by 

f(oi) ?[ 11 exp{-0.5 Ij(Oi)lu 
? I 7(Oi), 

where lj(Oi) = {yij - gi(0i)}2 and ir(0i) is N(bily, E). It is not possible to sample this dis- 
tribution directly without specialist random number generation techniques. The ratio-of- 
uniforms method may be used but requires, in its usual implementation, three numerical 
maximizations for each sample (Wakefield et al., 1991). The adaptive rejection sampling 
routine cannot be used since the conditional distributions are typically not log-concave. Gilks 
et al. (1995) proposed the Metropolis adaptive rejection sampling algorithm for such cases. 
Care must be taken when such chains are constructed, however; see Gilks et al. (1997). 

5.2.2. The algorithm 
We can write this model in a different way by introducing a (latent) random effect uij for each 
observation. This latent model is obtained by specifying 

yijluij, 0i , U{g(gi) - Vuij, gi1(0i) + \Uijl, 

and 

uijlA - G(uiJ3/2, A/2), 

where G denotes the gamma distribution and A = 1/a. It is easily seen that integrating over 
the uij returns the original normal model. 

The full conditional distributions for the Oi random effects are given by 

f(wi IUi) a 7e(i) I(hi E Ai), 

where 
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Ai= {0i: lj(Oi) < ui1,j= 1, . ni, 

which is 

Ai = {0: yy - lu,j < gij (0) < yij + ,,Iuij, j = 1, * .} 

Therefore we can sample 0i from ir restricted to this set. The full conditional distributions for 
the latent variables are given by 

fluijl0i) oc exp(-Auij/2) I{uij > lj(Oi)l. 

The full conditional distribution for A, with prior A-1, is given by 

G (A 3N/2, E E ui/2) 

In the following, for notational convenience, we have removed the subscripts i and put 
m = ni. Recall that 

f(Olu) cc t exp(-0.5Auj) I{uj > lj(O)}] -(O). 

Generally we will not be able to find the set Ai analytically and so instead we sample each 
element of 0 separately. We sample fromf(Olu) by sampling fromf(OkILOk, u), for k = 1, . . .,p 
where p is the dimension of 0. This involves sampling from 7(Ok I0-k) I(Ok E Ak) where 

it = {Ok: ij(Ok, O-k) < Uj,i= 1, .. ., m}. 

Clearly the specific form of A,, and Ak will depend on the likelihood lj(-). 

5.2.3. Example 8. logistic model 
For the logistic model we obtain 

lj(0) = [log(yj) - 01 + log{1 + exp(02 + 03x1)}]2. 

We shall concentrate on finding the sets A , k = 1, . . ., 3, since once we have done this the 
algorithm is straightforward. Now 

A= (max{aj}, min{bj), 

where aj = log(yj) -Vuj + log{1 + exp(09 + 03x;)} and bj = log(yj) + ? uj + log{1 + exp(02 + 

03Xj)}. Let S= {j: exp{01-l uj - log(yj)} > 0}. If S 74 0 then 

A= (max{oa}, min{fy}), 

where 

aj = log[exp{0l - - log(yY)} - 1] - 03X1 

and 

oj = log[exp{0l +? -log(y1)} - 1] - 03xJ 
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(note that 01 + - log(y) > 0). If S = 0 then 

A= _-o, min{o}). 

Finally, if S 74 0, 

A= (max[7j}, min6jl}), 

where 

j= (log[exp{0l - Vuj - log(y)} - 1] -0?)x 

and 

j= (log[exp{01 + Vu - log(y)}- 1] - 02)/xj. 

If S = 0 then 

A3,-(-oo, min{ . 

6. Numerical example 

In this section we consider a non-linear mixed model example and compare our auxiliary 
variable Gibbs sampler with a Metropolis-Hastings algorithm. 

6.1. Non-linear random effects model 
The example is taken from Lindstrom and Bates (1990). Let yij denote the observed trunk 
circumference measured on the ith orange-tree, i = 1, . . ., 7, at time xij, j = 1, . . ., 5. The 
logistic model (Section 5.2.3) models the relationship between trunk circumference and time: 

log(yij) = 01i - log{1 + exp(02i + xijO3i)} + cij, 

where yi, are the observed trunk circumference measurements and cij are IID normal with 
mean 0 and variance a2. The second stage assumes that Oi - N(Oilu, E) where Oi = 
(Oli, 02i, 03i)- Conjugate priors are assumed for a2 p and E. 

We shall compare our algorithm with a Metropolis-Hastings algorithm which is used for 
sampling from the full conditional distribution for Oi. A typical MCMC implementation for 
this model (see, for example, Bennett et al. (1996)) would be to use a Metropolis-Hastings 
chain with a random walk algorithm for 0i, i = 1, . . ., n. The proposal prior may be taken as 
a multivariate normal distribution, centred at the current point, and with covariance matrix 
given by a scalar multiple of the asymptotic covariance matrix evaluated at a point close to 
the posterior mean (calculated from an initial run for example) or the maximum likelihood 
estimate. The aim is to select the scalar to control the size of the steps in the random walk. If 
too large a value is chosen then few moves will be made; if too small a value is taken the walk 
will only take small steps. 

The lengths of the Fortran code that implemented each algorithm were approximately 
equal. Similar run times were obtained for 10000 iterations of each algorithm but the 
Metropolis-Hastings algorithm required preliminary runs to obtain a desirable acceptance 
probability (54% for the final algorithm; for a discussion of optimal rates see Roberts et al. 
(1997)). Finally, we compare the 'worst' case of autocorrelation for each of the algorithms. In 
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the random walk Metropolis-Hastings algorithm this was with the ,u3-parameter and with the 
auxiliary variable Gibbs sampler this was with the E33-parameter. The lag 1 autocorrelations 
of each of these parameters were 0.79 and 0.75 respectively, with the autocorrelations dying 
away very slowly for the Metropolis-Hastings algorithm (0.39 at lag 40) but falling to 0 by 
lag 9 for the auxiliary variable sampler. 

7. Discussion, extensions and conclusions 

In Section 6 we presented an example, using the auxiliary variable method, which resulted in 
a quick and efficient MCMC algorithm. Additionally, the algorithm was easy to code, 
requiring only standard random variate generation routines. However, we do not claim that 
superior efficiency will be the case in general. If there is an efficient Metropolis or rejection 
algorithm then, rather than introducing latent variables, this may be the preferred choice. 

A broad question is 'Will a Gibbs sampler with more conditional distributions, all of which 
are uniform densities, be more efficient than an MCMC sampler in which some or all of 
the full conditionals have to be sampled via rejection and/or Metropolis-Hastings-type 
algorithms?'. We are not aware of a definitive answer to this question. However, 'efficiency' 
may be measured in several different ways and for many practitioners ease of coding will be 
the dominating criterion, particularly in 'one-of' applications. 

The assessment of convergence remains a major problem with the use of MCMC 
algorithms. Results on rates of convergence are currently only available for narrow classes of 
models (Polson, 1996). Latent variables have a long history within the MCMC literature. In 
addition to the statistical physics work referred to in Besag and Green (1993) their use has 
also been proposed in a variety of models, e.g. with applications involving binary and 
polychotomous data (Albert and Chib, 1993), discrete regression models (Carlin and Polson, 
1992), Student t-distributions (Wakefield et al., 1994) and for constructing log-concave 
densities (Polson, 1996). In the data augmentation algorithm (Tanner and Wong, 1987) the 
latent variables represent 'missing' data which combine with the observed data to provide a 
'standard' posterior for the parameters. 

As far as the resultant Markov chain is concerned, Polson (1996) stated, 'Careful use of 
latent variables ... can lead to vast improvements in efficiency' and the examples in section 4 
of Polson (1996) give support to the auxiliary variable approach for two types of distribution. 
Polson indicated that there will be improved efficiency for these cases. That there should be a 
significant reduction in efficiency for all other types of distributions, with the introduction of 
auxiliary variables, does not, of course, follow. 
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