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Abstract: Eye tracking is an advancing technology holding significant promise to improve
our understanding of human behavior and decision making. Gaze data gathered by eye track-
ers contain events known as fixations. Fixations indicate visual attention and awareness, and
are identified by algorithms that parse eye-tracking data into a sequence of gaze point clus-
ters. While great potential exists, eye-tracker imprecision often results in noisy gaze data,
such as what arises from calibration errors, erratic eye movements, or other system noise.
Noise can cause inaccurate identification of fixations in eye-tracking applications, resulting
in misleading behavioral interpretations and conclusions. Therefore, fixation identification
algorithms should be robust against data noise. To resolve such inaccuracies, we propose
FID+: outlier-aware fixation identification via fixation inner-density. We represent the prob-
lem of detecting outliers in fixation gaze data through a novel mixed-integer optimization
formulation, and subsequently strengthen the formulation using two geometric arguments
to provide enhanced bounds. We show that neither bound dominates the other, and that
both are effective in reducing the overall solution runtime. Our experiments on real gaze
recordings demonstrate that accommodating for the reality of fixation outliers enhances the
ability to identify fixations with greater density in reasonable runtime.

Keywords: Eye Tracking; Fixation Identification; Outlier Detection; Fixation Inner-Density;
Mixed-Integer Optimization; Time Series

1. Introduction

Eye-tracking technologies are an increasingly powerful tool for analyzing human behavior

and visual attention patterns. An eye-tracking device provides objective, quantitative data

concerning human gaze, which can be used to analyze focus of attention and awareness

under variable visual stimuli. Eye-trackers can be readily attached to computer devices.

Figure 1 depicts such a screen-based configuration. The eye tracker uses infrared light
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illuminators and cameras to identify light source reflection patterns on the eyes of a user.

The captured patterns are used to algorithmically estimate a consecutive stream of (x, y)

gaze point positions on the computer monitor.

Gaze Point (x, y) in 
Screen Coordinates

Eye Tracker

Figure 1: An eye-tracking device mounted to a computer monitor, recording eye movement
positions over time.

The proliferation of eye-tracking devices on personal computers [10] offers great potential

in many practical applications, such as analysis of user experience [11, 18, 19] and enhance-

ment of multimedia learning experience [47]. In management science research, many studies

analyze customer decision-making via visual attention information collected by eye-tracking

devices. Eye-tracking technology is used for learning information acquisition patterns in

customer shopping environments [40], for studying the efficiency of decision processes in

conjoint choices [32], and for the evaluation of behavior attention in retail category manage-

ment [7, 24]. In healthcare studies, eye-tracking technology has been employed for researching

human cognition and decision making [2], experimental psychology studies [45] and atten-

tional neuroscience [13] investigations. Eye-tracking technology has particularly prominent

uses as a supportive diagnostic tool for monitoring vision health [8] and mental health [49];

Augmentative and Alternative Communication (AAC) devices commonly adapt eye track-

ing technologies to substitute for more traditional human computer interaction tools such as

keyboard and touch screen. AAC assists individuals with disabilities like autism [17, 29, 51],

muscular dystrophy [30, 36], and cerebral palsy [9] to more easily use technology.

The foundation of all of the aforementioned eye-tracking applications is a system that

can accurately process gaze data and correctly identify human visual attention. For supe-
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rior performance, such systems require both high-quality gaze data, as well as efficient and

effective translation of raw gaze data into behavioral indicators.

While high-quality gaze data is a prerequisite for information acquisition among all

eye-tracking recordings, a variety of factors in real-world settings can adversely affect gaze

data quality. These include system issues such as sensor noise and data loss from the eye

tracker [25], calibration errors prior to the start of an experiment [23], gaze data process-

ing algorithms [23], participant characteristics [23], eye-tracking experiments design [5], and

poor recording environments and low-skilled operators [23]. The reality of eye movement

mismeasurement and data noise in eye tracking recordings ensures that outliers exist in gaze

data. While outliers have been studied in a variety of settings [1, 6, 12, 16, 20, 38, 50], when

left unremedied in accuracy-dependent contexts, outliers can distort downstream processing

and analysis, ultimately leading to inaccurate and less useful research.

Technically speaking, gaze data is categorized into two primary types: fixations are clus-

ters of points that are adjacent in proximity and time, whereas saccades are higher velocity

gaze points that occur between fixations. Because fixations represent visual attention, the

accurate classification of eye gaze data into its constituent categories is a must for researchers

to precisely understand focus of attention in meta-analysis, which is the most critical issue

in eye-tracking research and development. The process of categorizing fixation and saccade

eye movements is known as fixation identification [4, 39, 48] or event detection [3, 33]. While

the velocity-based I-VT filter [39] and the dispersion-based I-DT filter [39] serve as two foun-

dations upon which many fixation identification methods are built, each suffers from limited

precision that skews fixation properties [3, 33] and hinders downstream research that relies

on these essential properties.

Trapp et al. [44] advance the state-of-the-art in fixation identification through the notion

of fixation inner-density, which addresses some limitations of existing methods including

a lack of sensitivity to peripheral fixation points, as well as possible misrepresentation of

fixation properties. They introduce the FID filter [28] which uses integer optimization tech-

niques to identify fixations in a sequence of gaze points by optimizing for inner-density. The

benefits of the FID filter can be seen in Figure 2, where it can eliminate extraneous gaze

points #1 and #9 that are at the boundaries of the fixation – technically under the velocity

threshold, but likely not belonging to the fixation. Computational results demonstrated that

the FID filter is efficient and effective in identifying denser fixations than the current I-VT

method.

There are opportunities to improve the FID filter, especially its sensitivity to handle

occasional noise and erratic eye movements within gaze data. The optimization model in [44]

enforces that within a single fixation, all fixation points must be temporally adjacent; this
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Figure 2: Illustration of fixation and its apothem (side half-length) identified in a gaze data
chunk; FID filter: minimizing apothem of fixation bounding box.

can result in overly strict interpretations of fixations, whereby some small aberrations which

should be otherwise ignored, may force fixations to terminate early. Thus, it is worthwhile

to allow for some small deviations in the sequence, for example if a stray gaze point exists

between two larger clusters of gaze points in the same region. In this case, it may be

preferable to allow for the facility to simply omit this gaze point.

We contribute to the eye-tracking fixation identification literature by creating the first

density-based method for detecting fixations that is outlier-aware. The FID filter is intro-

duced in [44] and employs optimization-based approaches to find the densest fixations, but

is otherwise silent with respect to outliers. The work presented in this study augments the

FID filter by enabling the detection and elimination of certain outlier points within the fix-

ation. Our work can significantly improve results in identifying fixations within noisy gaze

data. This is particularly important for eye-tracking experiments where the understanding

of human visual attention is of central importance, such as healthcare applications.

We propose an enhanced mathematical optimization formulation – FID+ – to account

for this outlier sensitivity. To the best of our knowledge, this paper and [44] are the only

approaches to identify fixations in gaze data by optimizing for density. The addition of a

new set of budget-constrained binary variables accounts for the condition of where a gaze

point is labeled as an outlier. In conjunction with the existing binary variables that indicate

whether a gaze point is labeled as a fixation point, we introduce two new constraint sets

that together represent time consistency in light of outlier gaze points. While the new

formulation accurately remedies the aforementioned limitation, it does so at the cost of
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additional complexity. Thus, we present two algorithmic techniques to tighten lower bounds

on the size of the apothem (which is minimized) to improve the computational performance.

The remainder of this paper is organized in the following manner. In Section 2 we provide

background on fixation identification algorithms for analyzing eye-tracking data, including

classical methods, as well as the more recent FID filter. In Section 3 we present FID+,

a novel mixed integer programming (MIP) formulation for detecting fixations with outlier

sensitivity. We subsequently provide two geometric arguments to strengthen the optimiza-

tion formulation by enhancing the lower bounds on the apothem of the bounding box, and

demonstrate that both are advantageous (we show that neither technique dominates the

other). Section 4 details the computational experiments on real eye-tracking data, including

a discussion on its observed performance. Finally, we conclude the paper and discuss future

work in Section 5.

2. Background on Eye-Tracking Technologies

Gaze data is recorded as a sequence of (x, y, t) triplets, often referred as the point of regard

(POR) in eye-tracking literature, where (x, y) attributes represent eye movement position

on 2D stimuli, such as static computer displays. The third attribute t is the timestamp

that represents when the corresponding position is recorded by the eye-tracking device. The

sampling rate of commercial eye-tracking devices commonly ranges from 30 Hz to 1,000 Hz,

or even higher.

Eye movements can be separated into two common types of events: fixations and sac-

cades. The purpose of eye movement classification is to isolate eye movements within the

gaze data stream into distinct time intervals that correspond to oculomotor responses or

cognitive properties towards visual stimuli [3]. Fixations are clusters of gaze points that oc-

cur near in both time and location. This is because the act of fixating maintains visual gaze

on a single location while cognitive processing occurs. On the other hand, saccades are the

rapid movements between fixations. Notably distinct from saccades are smooth pursuit [37]

eye movements, which allow the eyes to follow a moving visual stimulus. Similar to many

of the current classification algorithms that identify fixations and saccades [3], we also limit

our discussion to fixation identification, that is, gaze points that are not fixations are not

further classified as saccades or smooth pursuits.

The stability of fixation identification is highly influenced by gaze data quality, which

has long been discussed in eye-tracking research. We now review the key aspects of data

quality and the actual impacts for fixation metrics.
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Figure 3: Illustration of accuracy and precision for measuring gaze data quality, reproduced
from [34]. Accuracy is the difference between the centroid of grouped recorded gaze points,
and an actual reference fixation location. Precision is the variance of the gaze point dispersion
in a fixation.

2.1 Data Quality and Fixation Outliers

High-quality gaze data is the foundation of generating valid and reproducible behavioral

research results. As illustrated in Figure 3, Accuracy and precision are the two highlighted

aspects measured for eye-tracking data quality. The reference location, denoted with a “+”,

is where the participant is asked to fixate. Accuracy, also called offset, refers to the shift

between the recorded gaze position location, and the actual reference location. Precision

refers to the variance of the recorded positions to the reference location [16, 23, 34].

Inaccuracy and imprecision can be attributed to multiple factors: eye-tracking cam-

eras [34], algorithms for capturing eye movements [34], experimental design [5], system is-

sues (such as sensor noise, data loss) [25], and various participant characteristics (such as

glasses, astigmatism, eye color, head movements) [34]. Poor data precision leads to noisy

gaze samples, which can challenge the reliability of fixation identification algorithms.

Figure 4(a) illustrates a raw gaze sequence with 425 points collected by a Tobii Pro

TX300 [43] eye-tracking device, while Figure 4(b) shows a noisy raw gaze sequence with the

same length also from the same device. Gaze points in Figure 4(a) show explicit clusters

at the location of fixations. However, the clusters in Figure 4(b) contain multiple stray

points, and those points appear to drift to the same direction from their temporally adjacent

points. The fixation patterns in Figure 4(b) will inevitably contain some noise points in a

long fixation gaze point sequence. Such noise points should be viewed as Fixation Outliers,

and subsequently be eliminated from fixations.

Fixation outliers can have substantial effects on the precision of fixation metrics, such as

the number, and duration, of fixations [23]. Also impacted is dwell time, a commonly used

measurement of gaze duration in eye-tracking research for entering and remaining in an area
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(a) Well-calibrated gaze data in two dimensions recorded by eye-tracking device.
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(b) Noisy raw gaze data in two dimensions recorded by eye-tracking device.

Figure 4: Comparison between normal gaze data and noisy data.

of interest [22]. As illustrated in Figure 5(a), when the point C is included as a fixation point,

the square fixation bounding region increases significantly and the fixation centroid shifts

away from its original position. Figure 5(b) shows an actual example of possible fixation

outliers appearing in real gaze data.

2.2 Common Algorithms for Fixation Identification

Fixation identification is closely related to cluster analysis. Because there is inherent ambi-

guity in assessing the quality of grouped objects, formal evaluation of fixation identification

algorithms is challenging and lacks standardization. While it is commonly agreed upon that

all existing algorithms for event detection have limitations [3], it is valuable to examine those

that exist because they form the foundation of the state-of-the-art and offer insights into how

to approach solving the fixation identification problem. In particular, a recently developed

algorithm known as the fixation identification (FID) filter was the first to incorporate an

optimization-based approach to identify fixations, optimizing for fixation inner-density [44].

We now review key existing methods.
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(b) Example in raw gaze data: the intermediate
red gaze points (top left) are far from the main
cluster of gaze points, indicating the potential
to be fixation outliers.

Figure 5: Influence of fixation outliers on fixation metrics.

2.2.1 Velocity-based Algorithms

In velocity-based algorithms for fixation identification, the classical approach is the Identi-

fication by Velocity-Threshold (I-VT) filter [39]. This algorithm sequentially separates gaze

points into fixations and saccades based on point-to-point velocity. Points with velocity

exceeding that of a predefined velocity threshold V are categorized as saccade points. This

process naturally separates gaze points into distinct fixations. This algorithm is fairly accu-

rate in saccade detection, easy to implement, and robust for a variety of practical uses for

eye-tracking devices. However, a signification drawback is that the I-VT filter may result

in misclassifying gaze points that, while having a velocity technically below the threshold,

are locationally separate from adjacent gaze points. This shortcoming can skew fixation

metrics such as fixation centroid location, which is an important representation of visual

location for user attention in behavioral studies. Another drawback is that constant velocity

thresholds are not suitable for gaze stream data with substantial noise. Some recent stud-

ies [14, 15, 33, 46] enhance the basic I-VT filter by designing an adaptive velocity threshold

that provides greater flexibility with event classification at different noise levels. Even so,

there exists an inherent challenge: the I-VT filter does not consider the compactness of

constituent gaze points.
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2.2.2 Dispersion-based Algorithms

The Identification by Dispersion-Threshold (I-DT) filter [39] is a classical dispersion-based

method The I-DT filter identifies fixations using two predefined thresholds: the minimum

fixation duration, and the maximum fixation dispersion threshold D. It uses a fixed-size

sliding window to sequentially examine data. To constitute a fixation, the length of the

gaze sequence should meet or exceed the minimum duration, while its dispersion should

not exceed D. The dispersion of the gaze sequence is measured using gaze point location.

One implementation is to set a threshold for fixation radius. It also can be defined as

a dispersion threshold D that equals to the sum of the length and width of the window

covering a minimum amount of consecutive points. The main limitation of the I-DT filter is

that D is a constant parameter, which may result in misclassifying gaze points and a lack

of sensitivity in actual implementation. Some research has been done to further investigate

dispersion-based algorithms. Blignaut [4] suggested that the correct setting of dispersion

threshold for fixation radius was found in the range of 0.7◦ to 1.3◦. Veneri et al. [48] propose

an algorithm with improved dispersion criterion that is based on the analysis of fixation

variance using covariance thresholds and F -tests.

2.2.3 Density-based Algorithms

One recent study that identifies fixations by density-based clustering is the modified DB-

SCAN algorithm proposed in [27]. Traditional DBSCAN requires two parameters: the min-

imum distance ε between two points, and the minimum number of points minPts to form

a dense region. It then categorizes points into core points, border points, and others (which

are known as noise points). The modified DBSCAN algorithm in [27] adds an additional

requirement while evaluating the number of points within the dense region: the points within

distance ε should be temporally adjacent. In consequence, the core points and border points

constitute the fixations, whereas the other points are classified as saccades.

2.2.4 Fixation Inner-Density-based Algorithms

Trapp et al. [44] introduced a new fixation identification method known as fixation inner-

density (FID). It combines both temporal and spatial aspects of the fixation. Together,

these aspects are used to evaluate the compactness of a fixation, which has been shown to

be positively correlated with user attention [41]. Inner-density overcomes several limitations

of existing methods, such as a lack of sensitivity to peripheral points of a fixation, as well

as the misrepresentation of fixation properties. The FID filter inherently differs from [27]

in two aspects: methodology and the interpretation of density. Two mixed-integer opti-
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mization approaches were developed to identify fixations in a sequence of gaze points by

optimizing for inner-density. The key novelty is the guarantee that there is no better gaze

point identification according to the objective function of optimizing for inner-density, mod-

ulo the parameter α. This parameter is a predetermined value (e.g., via expert judgment)

that enables decision-makers to have fine-tuned control over the inner-density.

Simultaneously identifying all fixations in the entire gaze stream is computationally pro-

hibitive. We exploit the fact that saccades are natural separators of fixation to decompose

the entire gaze stream into a series of data chunks for efficient processing. This decomposi-

tion principle, together with the optimization approach applied over all chunks, constitutes

the FID filter. The experimental results on real datasets demonstrate that the FID filter

with optimization formulation (13a)–(13f) in [44] is efficient and effective, averaging under

one second per chunk to identify the α-densest fixation among the constituent gaze points.

The identified fixations exhibit greater density than the existing I-VT filter, reflecting the

ability to refine fixations, as well as more accurately represent gaze metrics such as fixation

duration and center. The improved gaze metrics can form a more precise representation of

attention and awareness for further analysis in eye-tracking studies.

While we have addressed the benefits of eliminating fixation outliers, such as illustrated

in Figure 5, the FID filter is limited in its ability to account for fixation outliers due to the

overly strict nature of the constraint set outlined in Proposition 1 of Section 3.2.2 of [44]

that requires every fixation to contain only consecutive gaze points in time. Therefore, to

enable the FID filter to account for outlier sensitivity, we extend the approach in [44].

3. Mathematical Developments

From a gaze sequence S with T points (xt, yt), t = 1, . . . , T , we seek to identify fixation

points to constitute F fixations. The fixation identification problem discussed in [44] requires

each fixation to contain at least N points for information processing to occur, and those

points must be temporally adjacent. Define T F binary variables z, with ztf = 1 if gaze point

t is included in fixation f , and 0 otherwise. Of the two formulations presented in [44] for FID

filter in finding dense fixations, we focus on the latter, Minimize Square Area of Fixations [44,

formulation (13a) – (13f)]. The formulation bounds each fixation with a two-dimensional

square box of minimal area; it achieves a minimum area by equivalently minimizing the

apothem of the square, rf . The model incorporates a non-negative parameter α into the

objective function that balances the trade-off between the inclusion of additional gaze points

and the compactness of the fixation region. For the sake of completeness, we include this
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formulation in (1a)–(1h).

minimize
F∑
f=1

[
rf + α

T∑
t=1

(1− ztf )

]
, (1a)

subject to
F∑
f=1

ztf ≤ 1, t = 1, . . . , T , (1b)

T∑
t=1

ztf ≥ N , f = 1, . . . ,F , (1c)

T∑
j=t+1

zjf ≤ (T − t)(1− ztf + zt+1,f ), t = 1, . . . , T − 1; f = 1, . . . ,F , (1d)

xf − rf −Mx(1− ztf ) ≤ xt ≤ xf + rf +Mx(1− ztf ), t = 1, . . . , T , (1e)

yf − rf −My(1− ztf ) ≤ yt ≤ yf + rf +My(1− ztf ), t = 1, . . . , T , (1f)

lx ≤ xf ≤ ux, ly ≤ yf ≤ uy, f = 1, . . . ,F , (1g)

rf ≥ 0, xf ≥ 0, yf ≥ 0, f = 1, . . . ,F ; ztf ∈ {0, 1}, t = 1, . . . , T , f = 1, . . . ,F .
(1h)

Objective function (1a) contains two terms, the first minimizes the sum of apothems,

and the second provides incentive to label additional points as fixation points. Constraint

set (1b) represents that a point can be assigned to at most one fixation. Constraint set (1c)

ensures that each fixation contains at least N points. Constraint set (1d) ensures gaze

points identified in one fixation are temporally adjacent. Constraint sets (1e)–(1f) are box

constraints to guarantee that when time point t is assigned to fixation f , it lies in the

square with center (xf , yf ) and apothem rf . Bounds for xf and yf are lx = min
t=1,...,T

xt,

ux = max
t=1,...,T

xt, ly = min
t=1,...,T

yt, and uy = max
t=1,...,T

yt. Then, the values of Mx and My are

calculated by Mx = max {|xt − lx|, |ux − xt|} and My = max {|yt − ly|, |uy − yt|}. Variable

definitions and bounds are listed in (1g)–(1h).

3.1 Decomposition Principle

The gaze sequence length T can easily reach the hundreds of thousands gaze points, and the

number of fixations can likewise be in the thousands. Formulation (1a)–(1h) is valid for any

number of gaze points T and fixations F . This includes subsequences obtained after applying

the decomposition principle discussed in [44]. This process separates a gaze data sequence

into distinct data chunks Ck, k = 1, . . . ,K, with data chunk separated by one or more saccade
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points as identified by benchmark filters such as the I-VT filter. After the decomposition, a

minimal number of fixations remain within each data chunk, and formulation (1a)–(1h) can

identify α-densest fixations efficiently in each chunk. Again, we term this approach the FID

filter. We also apply this decomposition principle in the FID+ filter.

3.2 FID+ Filter: Detecting Fixation Outliers in Gaze Data

In this section we present the insights for extending the mathematical formulation to identify

fixations with outlier sensitivity.

3.2.1 New Variables for Outlier Detection

We extend formulation (1a)–(1h) to additionally classify a small portion of gaze points within

the identified fixations as fixation outliers. Although they lie in the interior of a fixation time

sequence, they are not identified as fixation points (i.e., ztf = 1). Define T F binary variables

q, with qtf = 1 if gaze point t is an outlier in fixation f , and 0 otherwise.

3.2.2 Fixation Outlier Budget

We propose a budget P to allow some small number of outlier points. One reasonable value

for P is a percent p of the total number of gaze points T in the chunk, so that P = dpT e.
Hence, the sum of outlier points over all fixations should be less or equal to P :

F∑
f=1

T∑
t=1

qtf ≤ P . (2)

Alternatively, P can be set to any user-defined, positive integer.

3.2.3 Relaxation from Absolute Time Consistency

Proposition 1 in [44, Section 3.2.2] introduces the following constraint set:

T∑
j=t+1

zjf ≤ (T − t)(1− ztf + zt+1,f ), t = 1, . . . , T − 1; f = 1, . . . ,F . (3)

This constraint set ensures the included points within each fixation must be consecutive

in time. Fixation f terminates once a consecutive time pair (ztf , zt+1,f ) appears as (1,0)

among all the possible values {(0, 0), (0, 1), (1, 1), (1, 0)}. When (ztf , zt+1,f ) equals to (1,0),

the right-hand side becomes zero, ensuring that zjf = 0, for all j : t + 1 ≤ j ≤ T . It
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guarantees that the reminder of the points in the chunk are not included in this fixation.

For the other possible values of (ztf , zt+1,f ), the right-hand side is either (T − t) or 2(T − t),
so the constraint set becomes vacuous. Thus, for a fixation f , a starting gaze point at time

a and an ending point at time b, constraint set (3) ensures ztf is assigned in the following

fashion: i) ztf
t:t6∈{a,...,b}

= 0, ii) ztf
t:t∈{a,...,b}

= 1.

However, when a set of outlier gaze points E ⊂ {a+ 1, . . . , b− 1} appears between the

starting and ending fixation points, as indicated by qtf
t:t∈E

= 1, the corresponding ztf
t:t∈E

should be

assigned to zero. The assignment ii) changes to ztf
t:t∈E

= 0 and ztf
t:t∈{a,...,b}\E

= 1. The consecutive

pair (ztf , zt+1,f ) equals to (1,0) not only happens at the termination of f , but can also occur

when point t + 1 is identified as an outlier, i.e., qt+1,f = 1. When fixation f terminates,

(ztf , zt+1,f ) is (1,0) and qt+1,f should be assigned as zero. Following this interpretation, we

extend the constraint set from (3) to (4) by relaxing the assumption that fixation points

must be consecutive in time:

T∑
j=t+1

zjf ≤ (T − t)(1− ztf + zt+1,f + qt+1,f ), t = 1, . . . , T − 1; f = 1, . . . ,F . (4)

When qt+1,f = 0, indicating point t+1 is not an outlier for fixation f , the right-hand side

in (4) equals zero when consecutive time pair (ztf , zt+1,f ) equals (1,0). Thereby it ensures

the following variable zjf , for all j : t + 1 ≤ j ≤ T must be zero, which means fixation

f terminates as it may no longer include any gaze points. Therefore, when qt+1,f = 0,

the constraint set has the same impact as constraint set (3). However when qt+1,f = 1,

the constraint set induces no restrictions under any alternatives of (ztf , zt+1,f ), because the

right-hand side is always at least (T − t). Thus, the consecutive variables zjf , for all j :

t+ 1 ≤ j ≤ T may still be assigned to one. Therefore, the subsequent gaze points from t+ 1

to T can be included in fixation f and the assignment of (1, 0) to the pair (ztf , zt+1,f ) no

longer delineates the end of the fixation.

3.2.4 Controlling the Position of Outliers

While constraint set (4) generalizes the condition of strict time consistency, there is no

implication on the values that points zjf , for all j : t+ 1 ≤ j ≤ T can take when qt+1,f = 1.

In the absence of any other constraints, this may cause a fixation to be decomposed into

multiple components. To ensure that every fixation f has consecutive gaze points formed

by only fixation points (ztf = 1) and outlier points (qtf = 1), the following set of constraints
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can be incorporated:

qtf ≤ qt+1,f + zt+1,f , t = 1, . . . , T − 1, f = 1, . . . ,F . (5)

Constraint set (5) ensures that if qtf = 1, the next gaze point at t+ 1 must be classified

as a fixation point (zt+1,f = 1) or a fixation outlier (qt+1,f = 1). When qtf = 0, the constraint

is always valid. While this constraint set technically allows both zt+1,f = 1 and qt+1,f = 1,

there are scarce outlier points available by (2), and so gaze points are classified as outliers

only when it is beneficial for the objective, that is, when subsequent gaze points are classified

as fixation points. Constraint set (5) introduces T F − F additional constraints.

3.3 Minimizing Square Area of Fixations with Outlier Sensitivity

We now present the final MIP formulation for FID+: outlier-aware fixation identification via

density optimization. Note that the extensions discussed in Section 3.2 can also be applied

to Minimize Average Intra-Fixation Sum of Distances [44, formulation (12a) – (12f)].

minimize
F∑
f=1

[
rf + α

T∑
t=1

(1− ztf )

]
, (6a)

subject to
F∑
f=1

ztf ≤ 1, t = 1, . . . , T , (6b)

T∑
t=1

ztf ≥ N , f = 1, . . . ,F , (6c)

T∑
j=t+1

zjf ≤ (T − t)(1− ztf + zt+1,f + qt+1,f ),

t = 1, . . . , T − 1, f = 1, . . . ,F , (6d)

qtf ≤ qt+1,f + zt+1,f , t = 1, . . . , T − 1, f = 1, . . . ,F , (6e)

F∑
f=1

T∑
t=1

qtf ≤ P , (6f)

xf − rf −Mx(1− ztf ) ≤ xt ≤ xf + rf +Mx(1− ztf ), t = 1, . . . , T , (6g)

yf − rf −My(1− ztf ) ≤ yt ≤ yf + rf +My(1− ztf ), t = 1, . . . , T , (6h)

rf ≥ 0, lx ≤ xf ≤ ux; ly ≤ yf ≤ uy, f = 1, . . . ,F , (6i)

ztf ∈ {0, 1}, qtf ∈ {0, 1}, t = 1, . . . , T , f = 1, . . . ,F . (6j)

Formulation (6a)–(6j) uses binary variables ztf to assign time point t to fixation f . It
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incorporates binary variables qtf to identify outlier points in each fixation f . Objective

function (6a) minimizes the sum of fixation square apothems, penalizing the number of

excluded points with parameter α. Constraints (6b) and (6c) are the fundamental constraints

indicating that a time point can be assigned to at most one fixation, and each fixation

contains at least N points. Constraint set (6d) relaxes fixation point assignment from

absolute time consistency, while constraint set (6e) ensures points identified as outlier points

are succeeded by either outlier or fixation points. Constraint set (6f) ensures the number of

identified outlier points is within the fixation outlier budget P . Constraints (6g)–(6h) ensure

that the identified points in fixation f present in the fixation bounding box with center (xf ,

yf ) and apothem rf . Variable definitions and bounds are listed in (6i)–(6j).

While formulation (6a)–(6j) is correct and detects fixation and outlier points, initial

computational testing on larger instances revealed that, while strong feasible solutions were

quickly found, the MIP solver Gurobi [21] experienced difficulty proving optimality.

3.4 Deriving Lower Bounds on rf

Objective function (6a) minimizes the apothem rf of the bounding box encompassing the

fixation points. While feasible solutions to (6a)–(6j) representing strong upper bounds are

quickly computed using the MIP solver Gurobi [21], the lower bounds often exhibit only

gradual progress toward convergence, likely due to poor relaxation strength from constraint

set (6d).

To accelerate the computational proof of optimality, we present geometric arguments that

can strengthen lower bounds on rf . We algorithmically preprocess the gaze point sequences

to identify lower bounds ` on rf , f = 1, . . . ,F .

3.4.1 Deriving Lower Bounds on rf via Sliding Windows

Consider identifying F fixations from a gaze sequence with T total points, each of which

requires at least N fixation points to ensure cognitive processing occurs [10]. Further, sup-

pose the entire budget of P outlier points is used in a fixation with the minimum number of

points N . Lemma 1 states that there will be at least one subsequence separated by outlier

points that contains at least
⌊ N
P+1

⌋
consecutive gaze points.

Lemma 1 Suppose for fixation f , the fixation point sequence sf has length Nf , and it is

decoupled into subsequences by Pf fixation outliers. There always exists a subsequence s of

sf with length of at least
⌊ N
P+1

⌋
points.
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Proof. The average length of all subsequences in fixation f is
Nf

Pf+1
, hence there is at least

one subsequence s whose length is greater than or equal to
Nf

Pf+1
. Because Nf ≥ N and

Pf ≤ P by (6c) and (6f), this implies
Nf

Pf
>
Nf

Pf+1
≥ N
P+1
≥
⌊ N
P+1

⌋
. Thereby the length of s is

also greater than or equal to
⌊ N
P+1

⌋
.

For fixation f , the apothem rf represents a minimum bounding box covering all included

fixation points, starting from a gaze point at time a to an ending gaze point at time b.

The apothem of the bounding box must satisfy rf ≥ 1
2

max
i,j
{|xi − xj|, |yi − yj|} for all the

point pairs (i, j) : a ≤ i < j ≤ b. The apothem rf of the bounding box is monotonically

nondecreasing as the number of points in the range [a, b] increases. Thus, a conservative

global lower bound `1 on rf can be derived from the individual lower bounds originating from

the distance arising from t, to t shifted by the minimum number of consecutive gaze points,

b NP+1
c. By considering all pairs of points

(
t, t+ b NP+1

c − 1
)

for t = 1, . . . , T − b NP+1
c+ 1, we

obtain a lower bound on rf . Finding `1 can be accomplished in polynomial time. For each

begin-end point pair, we compute the corresponding minimum bounding length `′1:

`′1 =
1

2
max
i,j

{
|xi − xj|, |yi − yj| t ≤ i < j ≤ t+

⌊
N
P + 1

⌋
− 1

}
. (7)

When a smaller `′1 is found, we update `1 to be `′1. The cost of this method is O
(
T −

⌊ N
P+1

⌋)
,

that is, it is linear in the number of gaze points T . This method is summarized in Algo-

rithm 1.

Theorem 1 For a gaze sequence S, `1 is a valid lower bound for rf , f = 1, . . . ,F , i.e.

`1 ≤ rf .

Proof. Suppose there exists `1 > rf for fixation f from Algorithm 1. By Lemma 1, we can

find a subsequence s of fixation f with a length of at least
⌊ N
P+1

⌋
. We further truncate s

by sequentially eliminating points from either the beginning or the end, until the remaining

sequence s is exactly
⌊ N
P+1

⌋
points. The remaining sequence constitutes a new sequence s′,

and let the apothem of the minimal bounding box be `1
′. Because s′ is contained in s, it has

fewer fixation points than fixation f . The lower bound on the bounding box apothem, by

the construction in (7), is a nondecreasing function in the number of points in the fixation,

thus we conclude that `′1 ≤ rf . This implies that `′1 < `1, which contradicts the fact that `1

is the minimal bounding box apothem for all the consecutive gaze subsequences with length

of
⌊ N
P+1

⌋
. Thus, the original statement holds.
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Algorithm 1 Determine Valid Lower Bound `1

Input: Gaze sequence S with length T ; fixation outlier budget P ; minimum number of
fixation points N .

Output: Lower bound `1 on the fixation apothem rf .
1: Set `1 ← max {|ux − lx|, |uy − ly|}.
2: for t = 1, . . . , T −

⌊ N
P+1

⌋
+ 1 do

3: Calculate the minimum bounding length
`′1 = 1

2
max
i,j

{
|xi − xj|, |yi − yj| t ≤ i < j ≤ t+ b NP+1

c − 1]
}

.

4: if `′1 < `1 then
5: Set `1 ← `′1.
6: return `1.

3.4.2 Deriving Lower Bounds on rf via Smallest Enclosing Squares

For a gaze sequence of T points, the apothem length of the smallest enclosing square covering

N points, irrespective of temporal adjacency, is a valid lower bound `2 for rf , f = 1, . . . ,F .

We adapt Algorithm 2 from [42] for finding the smallest square bounding box of N points for

each input gaze sequence. Algorithm 2 first sorts the gaze points at x-decreasing order and

sweeps each point. Hence, the algorithm sweeps points from right to left. When sweeping at

point t, the current xt is recorded as p1. From the points lying to the right of the vertical line

drawn by p1, it finds a set of points V whose x-axis value is in the range of [xt, xt+`2], y-axis

value is in the range of [yt − `2, yt + `2], where `2 is the smallest apothem of the enclosing

square identified thus far. It then finds the squares that exactly cover N points and their

left side is on the vertical line through p1 and bottom side is on the line through a point in

V . At each p1, the algorithm sweeps a horizontal line q2 from the top point to the bottom

point of V . Two binary search trees A and B are maintained to store every point (x, y)

above q2. If the horizontal distance x − p1 is greater than the vertical distance y − q2, the

point is stored in A in increasing x-order. Otherwise it is stored in B in increasing y-order.

For each q2, the element at rank k in the set (A− p1)∪ (B − q2) is selected. This is the side

length for a square that covers k points in the area from the top of V to q2. We compute `′2

as the half of the side length, and if `′2 < `2, we update `2 to be `′2.
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Algorithm 2 Determine Valid Lower Bound `2

Input: Gaze sequence point set S with length T ; minimum number of gaze points N .
Output: Lower bound `2 on the fixation apothem rf

1: Sort points in S at x-decreasing order.
2: Set `2 ← max {|ux − lx|, |uy − ly|}.
3: Set P ← empty balanced binary search tree.
4: for t = 1, . . . , T do
5: p1 = xt.
6: xMax = xt + `2
7: yMax = yt + `2.
8: yMin = yt − `2.
9: Insert a new node into P , key=yt, value=(xt, yt).

10: Set V ← ∅.
11: for node p ∈ P do
12: if xp ≤ xMax then
13: if yMin ≤ yp ≤ yMax then
14: Add (xp, yp) to V .
15: else
16: Delete p from P , i.e., P = P \ p.
17: if |V | ≥ N then
18: Sort points in V at y-decreasing order.
19: Set A← empty balanced binary search tree.
20: Set B ← empty balanced binary search tree.
21: for i = 1, . . . , |V | do
22: Select q = V [i] = (xq, yq) from V .
23: Set q2 = yq.
24: Insert a new node into A, key=xq, value=(xq, yq).
25: for node a ∈ A do
26: if ya − q2 > xa − p1 then
27: Delete a from A, i.e., A = A \ a.
28: Insert a new node into B, key=ya, value=(xa, ya).
29: if i ≥ N then
30: Find the key k at rank N in (A− p1) ∪ (B − q2).
31: `′2 = 1

2
k.

32: if `′2 < `2 then
33: Set `2 ← `′2.
34: return `2.

Theorem 2 For a gaze sequence S, `2 is a valid lower bound for rf , f = 1, . . . ,F , i.e.

`2 ≤ rf .

Proof. Consider the contrary, a fixation f has `2 > rf by Algorithm 2. A different `2
′ can

be calculated by randomly choosing exactly N of the fixation points in f , as there are at
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least N fixation points in the box bounded by rf . The enclosing square apothem can only

decrease when reducing to N of the enclosed points. Hence, we can conclude that `2
′ ≤ rf .

It suggests that these N points have a smaller bounding box apothem `2
′ than `2, which

contradicts the fact that `2 is the apothem of the minimum bounding box covering N points

in the given gaze data for fixation f . Hence, the original statement holds.

3.4.3 Comparison of Two Lower Bounds

In this section, we discuss the relation between `1 and `2 and we find that neither bound

dominates the other.

Proposition 1 Neither lower bound `1 or `2 dominates the other.

Example 1. Consider the examples of identifying one fixation in a gaze sequence with seven

points, as depicted in Figure 6. Supposing that N is four and the outlier budget P is one, `1

is determined by the x, y distances between
⌊ N
P+1

⌋
=
⌊
4
2

⌋
= 2 consecutive points, while `2 is

the apothem of the smallest square bounding box covering N = 4 points in the plane. The

relationship of `1 and `2 varies based on the distribution of gaze points: (a) shows `1 < `2;

(b) shows `1 = `2; and (c) shows `1 > `2.
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Lower Bound Box by Method II
Lower Bound Box by Method I

Figure 6: Comparison of lower bounding approaches. The gaze sequence length T = 7,
minimum number of covering points N = 4, and outlier budget P = 1. As shown in (a), (b)
and (c), depending on how the points are distributed, the effectiveness of lower bounds `1
and `2 vary.
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4. Computational Experiments

Formulation (6a)–(6j) with the decomposition principle described in Section 3.1 represents

the FID+ filter, which extends the earlier FID filter of [44]. We now discuss our computational

experiments using real eye-tracking data. We use a dataset obtained from the visual task

of answering Graduate Record Examination (GRE) Math reading questions on a computer

display [44], though we note that data from a variety of eye-tracking applications could

be used to evaluate the FID+ filter, as outliers occur largely independent of the context.

Algorithms 1 and 2 are introduced to derive lower bounds on rf to improve the computational

performance for solving the new formulation.

4.1 Experimental Setup and Data Preprocessing

The GRE Math dataset contains ten recordings collected by a Tobii Pro TX300 eye-tracking

device at 300 Hz. Each recording is approximately five minutes in duration. Table 1 summa-

rizes this dataset. We used the same data preprocessing strategy as discussed in [44, Section

4.2]. For each recording, we separate the data sequence S into chunks Ck, k = 1, . . . ,K`
using the Tobii Studio I-VT filter [35] with the default velocity threshold of V = 30◦/s.

The minimum number of gaze points is set to N = 30 (100ms), which is necessary for in-

formation processing to occur [26]. As shown in Table 1, this setting eliminates some data

chunks and remain approximately 721 valid data chunks in each recording on average. We set

Fkmin = Fkmax = 1 for formulation (6a)–(6j). The fixation outlier budget P is set as 1% of the

total number of gaze points in each data chunk Ck, that is, outlier budget Pk =
⌈
0.01 · |Ck|

⌉
.

This value of Pk allows for at least one point per data chunk to be identified as a fixation

outlier in formulation (6a)–(6j). As depicted in Figure 7(a), the distribution of data chunks

is long-tailed. Of the total 7,208 data chunks with at least N points, there are 1,860 data

chunks having more than 100 points (25.8% of total), and 59 data chunks with length of

greater than 500 points (0.8% of total). As the size of the data chunk increases, so does

the expected computational effort in solving formulation (6a)–(6j). All computational ex-

periments were conducted using an Intel core i7-6700MQ computer with 3.40 GHz and 16.0

GB RAM running 64-bit Windows 10. Gurobi Optimizer [21] with Python 2.7 was used for

the optimization modeling, algorithm development and solution process. We used default

parameter settings for seeking global optimality. We also set a time limit of one hour (wall-

clock) for solving the optimization model for each data chunk. MATLAB 2016a [31] was

used for additional data processing and analysis.
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Stimuli
Avg # of All

Points in Sequence
Avg # of

Data Chunks
Avg # of

Valid Data Chunks
Avg # of Points in
All Data Chunks

Avg # of Points in
Valid Data Chunks

GRE Math Reading Data 90,580 3,612 721 80,956 66,677

Table 1: Summary results on 300 Hz GRE Math Reading data with I-VT filter, averaged
over ten recordings per dataset [44].
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Figure 7: Depicting the distribution of data chunk size (left panel) and the average runtime
using formulation (6a)–(6j) in each bin under α = 0, 0.1, 1 (right panel). The right panel
also shows that with the increase of α, the runtime decreases; with the increase of

∣∣Ck∣∣, the
runtime increases substantially, and becomes especially apparent when

∣∣Ck∣∣ exceeds 100.

4.2 Computational Results and Discussion

Table 2 highlights the computational results of running the FID+ filter on the 300 Hz GRE

Math reading dataset, as well as formulation (6a)–(6j) using lower bounds from Algorithms 1

and 2. The rows of Table 2 are indexed by parameter α, and the columns display the

evaluation metrics, budget usage and runtime, and are to be compared with those of Table 3

which is reproduced from [44], depicting similar results without outlier detection. As in

Table 3, the evaluation metrics are averaged over all data chunks in each of the ten data

recordings. The evaluation metrics we consider are: fixation duration δ; cover rate γ; three

fixation inner-density metrics: ρ1, ρ2, and ρ3; and center shift λ.

The average fixation duration δ is the average number of fixation points in each fixation,

divided by the sampling frequency. The cover rate γ measures the ratio of points recognized

as fixations points, to the total number of points in a recording. We consider the three density

metrics in [44], each of which is inversely proportional to density. That is, they represent
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greater density as the magnitudes become smaller. The first metric ρ1 is the average pairwise

distance between fixation points within one fixation:

ρ1 =

∑P−1
p=1

∑P
q=p+1 dpq(P
2

) . (ρ1)

The second density metric ρ2 has the same numerator with ρ1: the pairwise distances of all

identified fixation points. The denominator is simply the number of fixation points. Hence,

as the number of included points increases, ρ2 experiences greater amplification as compared

to ρ1. The reason that ρ2 is considered in [44] is due to the relationship with the objective

function of its first formulation, Minimize Average Intra-Fixation Sum of Distances [44,

formulation (12a) – (12f)]. Though our demonstration for detecting fixation outliers focuses

on the latter formulation in [44], we retain ρ2 in our comparison for the sake of completeness:

ρ2 =

∑P−1
p=1

∑P
q=p+1 dpq

P
. (ρ2)

The third density metric ρ3 is the minimal square area covering the fixation divided by the

number of included fixation points:

ρ3 =
(2r̂)2

P
. (ρ3)

The center shift λ measures the Euclidean distance between the FID+ fixation centroid to

the I-VT filter centroid. Additionally, we report the fixation outlier budget usage β, which is

the ratio of the total number of identified fixation outliers to the cumulative outlier budget

over all data chunks in the ten data recordings. The reported runtime is the average of the

cumulative runtime of all data chunks in each of the ten data recordings.
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300 Hz GRE Math Reading Data

α
Duration Density Measures Cover Rate Center Shift Budget Usage Avg Runtime (s) Avg Runtime (s) w/ `1 Avg Runtime (s) w/ `2

δavg (s) ρavg1 ρavg2 ρavg3 γavg λavg β Gurobi Overall Gurobi Overall Gurobi Overall

0 0.1038 5.3981 81.2267 10.4529 0.2539 1.9494 0.91 12,548.8 12,647.9 10,624.0 10,724.8 10,729.2 10,969.9
0.1 0.2597 6.1667 231.2483 9.7190 0.6510 1.0814 0.87 1,898.2 2,006.3 1,637.5 1,742.5 1,560.6 1,802.7
0.2 0.2744 6.4515 259.4887 9.4059 0.6863 0.8331 0.82 315.5 430.6 242.3 345.5 249.3 493.9
0.3 0.2787 6.5700 268.5097 10.0599 0.6956 0.7397 0.75 186.3 305.6 145.9 253.6 150.9 398.1
0.4 0.2806 6.6383 273.4140 10.2574 0.6997 0.6916 0.74 147.1 267.0 116.3 226.0 115.6 363.2
0.5 0.2831 6.7417 279.7678 10.0763 0.7056 0.6213 0.45 128.8 247.6 96.3 205.4 99.7 347.4
0.6 0.2840 6.7941 282.5965 10.2516 0.7076 0.5861 0.41 108.9 225.9 82.3 191.0 83.9 331.7
0.7 0.2844 6.8136 283.7578 10.3622 0.7084 0.5750 0.41 97.7 214.7 71.8 181.6 73.0 320.3
0.8 0.2848 6.8364 284.9439 10.4752 0.7094 0.5603 0.39 88.4 205.7 63.1 172.5 64.5 311.6
0.9 0.2850 6.8465 285.3952 10.5318 0.7098 0.5541 0.38 80.3 197.3 56.9 164.8 58.4 306.7
1.0 0.2859 6.9006 288.2015 10.8704 0.7122 0.5151 0.24 73.4 190.7 51.2 158.4 52.9 303.1

Table 2: Results of the FID+ filter, (6a)–(6j) with lower bound `1, and (6a)–(6j) with lower
bound `2 on 300 Hz GRE Math reading dataset. The entries in the evaluation metrics
columns report the average metrics over all data chunks in each of the ten recordings; the
entries in the runtime columns report the total runtime averaged over each each recording,
containing approximately 721 data chunks.

300 Hz GRE Math Reading Data

α
Duration Density Measures Cover Rate Center Shift Avg Runtime (s)

δavg (s) ρ
avg
1 ρ

avg
2 ρ

avg
3 γavg λavg Gurobi Overall

0 0.1062 5.8589 90.1959 31.9361 0.2598 1.8150 574.3 659.5
0.1 0.2607 6.5335 241.3585 28.8872 0.6528 0.9478 364.5 454.1
0.2 0.2762 6.7828 268.4264 28.5850 0.6911 0.6739 264.7 354.7
0.3 0.2803 6.8764 277.5209 28.2034 0.7004 0.5727 207.2 299.7
0.4 0.2827 6.9654 283.6307 27.5299 0.7053 0.5046 154.7 246.6
0.5 0.2840 7.0202 287.1474 27.7181 0.7083 0.4589 119.0 212.0
0.6 0.2848 7.0571 289.3265 27.8777 0.7100 0.4300 87.0 178.1
0.7 0.2853 7.0816 290.6830 28.0161 0.7112 0.4095 67.1 159.0
0.8 0.2857 7.1100 292.1223 28.1589 0.7121 0.3880 53.9 145.1
0.9 0.2860 7.1251 292.7735 28.2548 0.7126 0.3777 43.4 136.5
1.0 0.2863 7.1483 294.0966 28.3347 0.7134 0.3612 37.7 128.8

Table 3: Results of the FID filter with formulation (1a)–(1h) on 300 Hz GRE Math reading
dataset; reproduced from [44].

Each entry in the evaluation metrics columns in Tables 2 and 3 is averaged over ten

recordings and all data chunks per recording. Each entry in the runtime columns reports

the averaged cumulative runtime for solving approximately 721 data chunks of the α-densest

fixations. Even for the most time-consuming α level, α = 0, the average runtime per chunk

to find the densest fixation with outliers was still well under 20 seconds (17.8 seconds). For

larger values of α, the average runtime exhibited even better performance: for α = 0.8, the

average runtime of each data chunk is less than 0.13 second. In Table 2, the optimization

models for all but twelve chunks (eleven for α = 0, and one for α = 0.1) solved to global

optimality within the one-hour time limit for formulation (6a)–(6j). The addition of the
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lower bound `1 and `2 enabled two additional models at α = 0, and the sole model with

α = 0.1, to be solved to global optimality.

The general trend of evaluation metrics and runtime from α = 0 to α = 1 are similar in

Tables 2 and 3. It indicates that α has a similar effect on fixation identification and fixation

properties in both formulations.

When compared to Table 3, the entries in the initial columns of Table 2 demonstrate the

effect of removing outliers. In particular, values of the average fixation duration δavg rate

are smaller in Table 2, indicating that less gaze points are identified as fixation points by

the FID+ filter. The difference of δavg is actually rather small, roughly akin to a single gaze

point, between Tables 2 and 3. Similar to δavg, the average cover rate γavg value under every

α level is slightly smaller in Table 2. Both Tables 2 and 3 have the same increasing trends

on δavg and γavg when α increases.

The three density metrics appear with smaller values in Table 2, as compared to Table 3.

Recalling that density is larger for smaller values of ρ1, ρ2 and ρ3, it demonstrates that when

allowing outliers within fixations, the mathematical formulation can further refine the gaze

points within chunks to identify denser fixations. It is worth noting that ρavg3 is two to three

times smaller in Table 2 than in Table 3. ρavg3 is the ratio of the minimal area bounding box

of the identified fixation, to the number of points this fixation contains, is identical to the

objective in formulation (6a)–(6j). ρavg3 becomes smaller either when the fixation bounding

area is smaller, or when the fixation duration decreases.

This trend of ρavg3 is strong evidence for the impact of outlier points on fixation density.

Using the outlier budget Pk =
⌈
0.01 · |Ck|

⌉
as specified in the experimental setup, 74.2%

of the fixations by formulation (6a)–(6j) identify only a single outlier point per fixation

(chunk size less than or equal to 100 points). This is further underscored in Table 2, as the

change in fixation duration is relatively minimal. However, ρ3 reduced by nearly two thirds.

This indicates that a small group of outlier points are substantially skewing the size of the

minimum apothem r and so the minimum fixation bounding box, and should be eliminated

in the fixation.

For all values of α, the center shift λavg reported in Table 2 is larger than λavg in Table 3;

λavg measures the Euclidean distance (in pixels) between the FID+ fixation centroid (as

specified by (xf , yf )), and the I-VT filter centroid. This increase in λavg reflects stray data

points being eliminated via the outlier budget in the FID+ filter, so as to better concentrate

around the actual fixation. The outlier budget ratio β in Table 2 decreases as α increases, due

to identified fixation outlier points being penalized in objective function (6a). Therefore, the

penalty parameter α not only serves for balancing the trade-off between density and number

of fixation points in for formulation (6a)–(6j), it also has significant influence on the number
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of fixation outliers identified by the formulation. One notable finding is that the budget P
is not always used, even for small α levels.

The improved fixation metrics come with the trade-off of increased computational run

time. The Gurobi runtime in Table 2 increases substantially compared with Table 3. The

increase appears between α = 0 and α = 0.1, where much more effort is consumed in

balancing the objective function trade-off of including a point, or incurring the penalty of

α [44]. As shown in Figure 7(b), the average runtime at each level of data chunk size increases

significantly at α = 0 and α = 0.1. At the same time, we find that nearly 95% of the outlier-

aware optimization models still solved to global optimality in under one second at α = 0

and α = 0.1, which we believe to be quite competitive.

The last four columns in Table 2 report the average Gurobi runtime and overall runtime

when using lower bounds derived from Algorithms 1 and 2. Under all α levels, the reported

Gurobi runtime from formulation (6a)–(6j) with Algorithms 1 and 2 is less than the Gurobi

time from solely solving the formulation (6a)–(6j), which demonstrates that the bounds

produced by both of the algorithms are effective in reducing the computational difficulty

to the solver. However, because Algorithm 2 requires additional computational cost for

processing the dataset, the average overall runtime for formulation (6a)–(6j) with Algorithm 2

only outperforms the experiment using solely formulation (6a)–(6j) for the α = 0 and α = 0.1

levels. Moreover, the additional time cost for running Algorithm 2 averages around 246

seconds. On the other hand, the time cost for running Algorithm 1 per chunk is negligible,

and thus does not contribute to much additional time in Table 2. The average overall runtime

of formulation (6a)–(6j) with Algorithm 1 is still smaller than the runtime for running the

formulation (6a)–(6j) solely. The runtime comparison indicates that both of the algorithms

contribute to reducing the runtime of solving optimization models. That said, because

Algorithm 2 incurs additional computational cost for data processing, only formulation (6a)–

(6j) with Algorithm 1 outperforms in both Gurobi optimization time and overall runtime at

every α level than only using formulation (6a)–(6j). Future work may focus on improving

the computational efficiency of the implementation of Algorithm 2.

5. Conclusions

This paper introduces outlier aware fixation identification for gaze data by extending the

recent FID (fixation-inner-density) filter that identifies the densest fixations in gaze data.

Our new FID+ filter enables stray gaze points within fixations to be flagged and eliminated

from fixation consideration, thereby increasing the accuracy and precision of key metrics

related to the actual fixation. Gaze data collected by eye-tracking devices is collected as
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a sequence of points representing the locations where eyes focus. Spatially and temporally

adjacent points are clustered as fixations. Fixation features – such as location, duration and

inner-density – carry information about user attention and awareness in behavioral research.

Such features are inherently influenced by how fixations and saccades (gaze points between

fixations) are labeled by the fixation identification algorithms. Downstream behavioral prop-

erties, such as dwell time, fixation heatmap and pupil dilation during fixations, are impacted

by the accuracy and precision of the fixation identification approach that is used.

Two popular fixation identification methods in practice are the I-VT and I-DT filters.

They use relatively simple properties of gaze data and can be implemented efficiently in

commercial eye-tracking devices. However, they can lead to inaccurate fixation results, which

will result in misrepresenting behavioral patterns. The recently developed FID filter [44]

overcomes the limitations of these baseline methods via integer optimization to optimize

for fixation inner-density, with an iterative algorithm that exploits the ability to decompose

an entire gaze stream into components, or chunks. In this paper we augment the FID

optimization formulation with a new set of variables that indicate whether gaze point t is

an outlier for fixation f . Moreover, we carefully design enhanced constraints that enable the

strict fixation time consistency condition to be relaxed, by allowing for a small budget of

fixation outlier points to be admitted. The enhanced integer optimization formulation (6a)–

(6j) can recognize stray gaze points as fixation outliers, a concept that is underexplored in

fixation identification algorithms. Raw gaze data contains inevitable noise (as depicted in

Figure 4(b)), and we demonstrate that the FID+ filter outlined in this paper can robustly

identify within-fixation outlier points, which is a significant enhancement to the existing FID

filter [44].

We conduct computational experiments to compare the new FID+ filter with the FID

filter with formulation (1a)–(1h) on the 300 Hz GRE Math reading dataset used in [44]. The

result shows that the FID+ filter can identify fixations with substantially greater density. In

particular, when comparing the density metric ρ3, the ratio of minimal area bounding box

and fixation point number, the FID+ filter featured a 2-3 times reduction in ρavg3 while con-

sidering a small number of points as outliers within each fixation. Thus, these developments

hold much promise for outlier-aware fixation identification.

Figure 8 highlights the comparison of fixation identification results from the FID+ filter

and the FID filter on the noisy raw gaze sequence showed in Figure 4(b). The illustrated

gaze stream segment contains three fixations. For Fixation 1, while the identified fixation

boundary looks identical for both methods, it turns out that, due to the ability to eliminate

outlier points, the enhanced formulation contains 50% more points than the original formu-

lation. This has the unexpected effect that formulation (6a)–(6j) has a slightly larger area,
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Saccadic Points

Fixation Points by  Both Formulations
Fixation Points by  Formulation (6a)–(6j)

Fixation Boundary by  Formulation (1a)–(1h)
Fixation Boundary by  Formulation (6a)–(6j)

Fixation Outliers by Formulation (6a)–(6j) 

Fixation 1
Fixation 2

Fixation 3

Figure 8: Fixation identification result with the FID+ filter versus the FID filter, α = 0.5,
on the gaze sequence in Figure 4(b).

because such increased area greatly increases the number of included fixation points after

outlier removal. Formulation (1a)–(1h) identifies all gaze points appearing before the outlier

point flagged by formulation (6a)–(6j) as non-fixation points, while balancing the inherent

trade-off present in objective function (6a). The gaze points at Fixation 2 are well clustered,

so the two formulations have fairly similar results. For Fixation 3, formulation (6a)–(6j)

identifies two fixation outliers and the fixation area decreases significantly as compared with

the area identified by formulation (1a)–(1h). The outlier-aware identification results of for-

mulation (6a)–(6j) likely have substantial impacts on the number of identified fixation points,

as well as fixation bounding regions. This behavior is similar across chunks in the gaze data

stream.

The approach outlined in this paper does have some limitations. Due to the additional

variables and constraints, the runtime for solving formulation (6a)–(6j) is slower than formu-

lation (1a)–(1h) at each level of α, and substantially so for the instances with large chunk size

at α = 0 and α = 0.1. We introduce two geometric arguments, and algorithms, for deriving

lower bounds on rf to accelerate the speed of reaching global optimality. Both algorithms

find stronger lower bounds (`1 and `2) that are able to reduce Gurobi runtime, although more

work is needed to improve the competitiveness for a small number of instances at α = 0 and

α = 0.1.
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Moreover, more work remains for refining Algorithm 2 to reduce its overall run time for

computing lower bound `2. Another possible direction of future work is to more carefully

investigate suitable budget values for each data chunk. While we set the outlier budget

value to approximately 1% of the length of the data chunk, other features such as data

chunk dispersion, and the average velocity of points, could suggest improved estimates for

the number of fixation outliers. Each data chunk could thereby have a data-driven budget

value based on its features.

More broadly, we believe that the efforts of FID+ will empower future studies on fixation

micro-patterns – that is, the distribution of gaze points within an individual fixation which

represent a further refinement of eye movement data [28]. Prior work in [41] shows that

these patterns can reveal significant information about focused attention and effort, which

subsequent findings further support [44]. Inner-density, as a representation of fixation micro-

patterns, incorporates both the temporal and spatial aspects of the fixation. When combined,

these aspects reveal significant and previously undiscovered information about attention.
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