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Abstract: Reverse supply chains are receiving increased attention for business and 

sustainability opportunities. As few organizations are adept at both forward and reverse 

supply chains, subcontracting various activities is imperative. Vendor selection that best 

achieves combined expertise for reverse supply chains, while quickly forming virtual 

enterprises to seize market opportunities, is an emerging issue. We formulate a novel 0-1 

integer nonlinear optimization model, subsequently linearized to enable efficient 

computational performance, to select vendors that minimize the maximum formation time 

for creating agile virtual reverse supply chains. We then generate a portfolio of diverse, high-

quality vendor assignments by adapting a recent algorithmic technique, thereby allowing 

industrial managers to address intangible factors into their final decisions. Computational 

experiments on simulated data demonstrate the model’s efficiency for generating sets of 

high-quality and diverse solutions in reasonable timeframes. 

 

Keywords: Virtual Enterprise; Reverse Supply Chain; Agile Enterprise; Sustainability; 

Integer Programming; Diversity 

 

Introduction 

Reverse logistics and supply chains have taken on a broader meaning over the past two decades. 

What used to be solely a business concern in managing product returns to manufacturers, reverse 

logistics has expanded to encompass an environmental sustainability dimension by seeking to 

extend the life of products and materials (Gunasekeran et al., 2014; Altekin et al, 2017; Zhu et al., 

2008). The shift in reverse supply chains to ‘close-the-loop’ has necessitated organizations to 

incorporate reverse logistics into their supply chains (Jayaraman et al., 1999; Srivastava, 2008). 

Throughout the world, recent legislation and new policies such as the circular economy have 

heightened the importance and value of recycling of wastes and, specifically, electronic wastes (Li 

et al., 2014; Nowakowski, et al., 2018) and reuse of materials. Therefore, the interest in forging e-
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waste supply/value chains to seek potential profitability and grasp market opportunity has been 

growing rapidly in recent years. Because electronic products have very short life cycles, managing 

the e-wastes must be conducted in a timely fashion. As few organizations are competent at both 

forward and reverse supply chains, subcontracting various reverse logistics activities has become 

a common practice, and e-waste supply chains are no exception (Guarnieri, et al., 2015; Grabara 

and Kot, 2017). 

 

As part of this subcontracting practice, organizations may seek out a single broker or a 

fourth party to support their reverse supply chain activities (Krumwiede and Sheu, 2002). This 

type of temporary organizational formation for the purposes of providing reverse supply chain 

services is similar to virtual organizations or virtual enterprises forming interim partnerships to 

take advantage of a short-term market opportunity (Dong and Wan, 2016; Sha and Che, 2006; 

Shamsuzzoha, et al., 2017). Our focus is on these virtual, temporary organizations that develop to 

deal with products having sensitive time value, such as electronic waste. Market sensitivity 

requires such organizations to be agile. 

 

Agile virtual reverse supply chain (AVRSC) is formed by a number of independent, yet 

complementary organizations, selecting the right members with needed resources and technical 

expertise, in a timely fashion, is critical. To this end we introduce an optimization model to form 

an AVRSC to take on a promising and time-sensitive business opportunity such as the resale of 

end-of-use electronic products. The model sets the stage for identifying a portfolio of attractive 

groupings of providers that can form a virtual enterprise in a timely manner. The portfolio is 

guaranteed to include an optimal solution (if one exists), and the remaining optimal and near-

optimal solutions incorporate diversity, as they are sequentially generated by simultaneously 
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balancing the desire for solution quality, with solution diversity. The result is a diversified solution 

portfolio from which decision-makers can select a set of high-quality AVRSC provider partners. 

We consider the decision-maker to be an organization seeking to manage the formation of a virtual 

enterprise, such as a fourth-party reverse logistics provider who wishes to take advantage of a 

temporary market opportunity. 

 

While the argument for optimal and near-optimal solutions within the context of 

optimization is clear, the introduction of multiple, diverse solutions is compelled by practical 

reasons. By providing a decision-maker with a set of diverse solutions, they can use their 

experience to evaluate alternative optimal and near-optimal solutions with respect to intangible 

factors such as proprietary issues, fairness and equity considerations, and other abstract factors 

that are difficult to quantify. Alternative optimal and near-optimal solutions that are overly similar 

are unable to offer the decision-maker such flexibility. 

 

We make the following four major contributions in this paper. From a theoretical 

perspective, we first provide a novel integer nonlinear programming formulation with the goal of 

minimizing the maximum formation time, the solution of which identifies optimal AVRSC 

partners while simultaneously satisfy budget, quality, demand, and cycle time constraints. Second, 

we show how to adapt an earlier technique of Trapp and Konrad (2015) to identify a diverse set of 

high-quality (as characterized by the objective function evaluation) solutions for integer 

programming problems with continuous variables. As Trapp and Konrad (2015) consider only the 

binary case, the present study is the first to consider this adaptation. Our technique presents an 

effective decision-making method that, built upon the novel integer nonlinear programming 
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formulation, sequentially generates diverse portfolio of optimal and near-optimal solution 

alternatives for virtual enterprise formation. Third, from an applications perspective, we explicitly 

consider time-sensitivity in our model, a critical aspect of successful AVRSCs. Lastly, although 

virtual reverse supply chains have been conceptualized for well over a decade (Browne and Zhang, 

1999; Meade et al., 2007), the issues and decision-models associated with agile virtual enterprise 

formation has received little attention in the literature. To contribute and advance the literature in 

reverse supply chains as well as agile virtual enterprise formation, we investigate the nexus of 

these areas. 

 

Within this context we initially provide background on the issues facing AVRSC in 

practice and research. The literature review summarizes existing approaches and identifies how 

the methodology introduced in this paper helps to fill an important gap in the literature. The integer 

nonlinear program is then presented and analyzed theoretically, including a reformulation to a 

mixed-integer linear program, followed by a brief introduction to the technique that we adapt to 

generate a portfolio of high-quality yet diverse solutions, numerical illustrations, computational 

experimentation and related discussions. The paper concludes with a summary of general 

observations, limitations associated with the study and directions for future research. 

 

Literature Review 

We classify the relevant literature into three categories. The first category defines the general 

structure of a reverse supply chain. Clearly identifying the structure and activities provides a 

practical foundation for formulating the decision-making problem under study. The second 

category discusses vendor selection and virtual enterprise formation techniques. The third category 
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has to do with the solution portfolio approach, which aims to generate a set of optimal and near-

optimal, yet distinctive, vendor selection solutions. 

 

General Structure of a Reverse Supply Chain 

Blackburn et al. (2004) identify the following five key processes in a reverse supply chain: 

(1) Product acquisition: obtaining the used product from the user; 

(2) Reverse logistics: transporting the products to a facility for inspecting, sorting, and disposition; 

(3) Inspection and disposition: assessing the condition of the return and making the most profitable 

decision for reuse; 

(4) Remanufacturing/Refurbishing: returning the product to original specification; 

(5) Marketing: creating secondary markets for the recovered products. 

 

 

It is not difficult to envision that the complexity of each process is determined by the composition 

of a product or material and that each process may need to be completed by a separate organization 

with specialized resources and expertise. Furthermore, other factors such as geographical 

locations, the number of possible vendors with suitable capabilities and capacities, and the volume 

and quantity of returned items will inevitably complicate the formation and operations of each 

reverse supply chain (e.g., Brandenburg and Rebs, 2015). 

 

Major activities in a reverse supply chain network are shown in Figure 1 (Presley et al., 

2007). At each stage potentially different organizations can be involved. The stages are 

interconnected with the sequence of events shown by arrows linking the activity boxes. These 

organizations may range from an original equipment manufacturer (OEM) to specialists in 

disassembling or transporting products and materials. Figure 1 is an illustrative graphic of a generic 
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reverse supply chain. Specific stages and players will vary depending on the product, market, and 

purpose of the reverse supply chain. For example, a reverse supply chain for electronics 

remanufacturing will likely be different than a reverse supply chain for managing warranties 

associated with returned consumer products. 

 

 

Figure 1: The Detailed Structure of a Reverse Supply Chain Network (Adapted from Presley et 

al., 2007) 

Vendor Selection Techniques 

Vendor selection is an essential aspect in forging collaborative partnerships in strategic sourcing 

as well as an important factor in the partnership’s ability to successfully complete daily operations. 

As such, this subject has received wide attention and has been studied extensively in the contexts 

of both forward supply chain network formation (de Boer et al., 2001; Ding et al., 2015; Govindan 

et al., 2013; Igarashi et al., 2013; Simic et al., 2017), as well as closed-loop supply chain 

configuration (e.g., Brandenburg and Rebs, 2015). Typically the supplier selection decision is 
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made under the premise that there exists a set of criteria, the importance of each criterion, and a 

pool of vendors with performance attributes or operational parameters, which are collectively 

referred to as discrete alternative multi-criteria decision-making. Depending on the complexity and 

the strategic importance of the decision-making situation, the techniques range from a 

straightforward weighted linear sum approach to more sophisticated stochastic modeling. 

 

We group the existing selection methods into the following three categories: (1) Ranking-

based: These techniques aim to derive or calculate a score for each vendor candidate based on a 

given set of criteria and their levels of importance. When the scores for all vendors under 

consideration are obtained, they can be ranked in descending order indicating the best choice. 

Several well-known methods fall into this category such as Total Cost of Ownership (TCO), 

Supplier Scorecard, Analytic Hierarchy Process (AHP), and the extended version of AHP – 

Analytic Network Process (ANP) (Asadabadi, 2017; de Boer et al., 2001; Meade and Sarkis, 1998; 

Sarkis et al., 2007; Verdecho et al., 2012). Some more sophisticated methods in this category 

integrate not only qualitative and quantitative factors into decision-making, but also consider 

uncertainty. Such techniques include Outranking Methods (Pirlot, 1997; de Boer et al., 1998) and 

Multi-Attribute Utility Theory (MAUT) (Shaik and Abdul-Kader, 2011) and various fuzzy set 

approaches (Simic et al., 2017). Additionally, different types of data and restrictions on the choices 

of weight values can also complicate the ranking method (e.g., Farzipoor 2009). (2) Deterministic 

optimization-based: These methods specify a managerial objective subject to a set of clearly 

defined constraints, which are formulated into a mathematical model with the selection choice as 

decision variables. Examples within this category include integer programming formulations 

(Glickman and White, 2008; Trapp and Sarkis, 2016) and data envelopment analysis (Ding et al., 

2015; Liu et al., 2000). When there are multiple objectives to consider, the optimization problem 
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may be formulated as a goal program. (3) Stochastic modeling-based: To capture the dynamic and 

uncertain elements inherent in the supplier selection decision-making process, a variety of 

techniques from operations research, and computational and mathematical sciences, can be used. 

For example, simulation (Ding et al., 2005), fuzzy logic (Jindal and Sangwan, 2016; Simic et al., 

2017), expert systems (Yigin et al., 2007), artificial intelligence (de Boer et al., 2001), and genetic 

algorithms (He et al., 2009) have been employed in supplier selection. In some cases, combinations 

of several methods are used not only to identify qualified suppliers, but also to accommodate 

diverse procurement situations (Ho et al., 2010). 

 

The methodology proposed in this study is best classified as deterministic optimization. 

This methodology, further described in the next section, seeks to determine high-quality and yet 

structurally diverse solutions which select vendor groups. The modeling approach has advantages 

and disadvantages similar to other mathematical programming formulations involving multiple 

criteria, such as ease of completion sensitivity analyses and moderate to low difficulty of adoption 

and data requirements. While our methodology may be somewhat more sophisticated for 

management to understand than simple scoring or multi-attribute techniques, the results of our 

methodology present a practical alternative to evaluate alternative solutions. Although the 

methodology introduced in this paper integrates economic factors (e.g., a budgetary constraint), 

its major focus is on helping management decision makers quickly arrive at a high-quality solution 

that will help them form a partnership of vendors in a timely fashion to service a market need and 

capture a market opportunity. Hence, the primary modeling emphasis is on formation time, rather 

than an economic objective typical of many other analytical models. 
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Solution Portfolios with Applications to Vendor Selection 

Several studies (Tsai et al. 2008; Danna and Woodruff, 2009; Schittekat and Sörensen 2009; 

Camm, 2014) discuss the merit of having multiple solutions of “good” quality for the benefit of 

decision makers. Portfolio solutions that incorporate diversity are further beneficial; two solutions 

that, while technically distinct, are actually very similar, may not be of much value to the decision 

maker. Recently Trapp and Konrad (2015) discussed a method to sequentially generate a portfolio 

of diverse optimal and near-optimal solutions to binary integer programs. The technique begins by 

identifying a single optimal solution to the original optimization model (assuming one exists), and 

then proceeds to maximize the (normalized) ratio of diversity, as expressed by distance from the 

centroid of solutions in the portfolio, to the loss in objective function quality. The technique has 

been used to generate a diverse portfolio of solutions to a supplier selection problem in Trapp and 

Sarkis (2016). Moreover, Petit and Trapp (2015) adapt the approach to find diverse solutions of 

high-quality to combinatorial problems using constraint programming techniques, and Petit and 

Trapp (2019) extend these ideas further by developing and demonstrating a framework to infuse 

solutions to combinatorial problems with ad-hoc quality notions. 

 

Vendor selection is an important prerequisite for the formation of virtual enterprises 

(Meade et al., 1997). While a number of vendor selection techniques for forging AVRSC 

enterprises exist, they largely fail to address two major decision factors. First, as AVRSC is very 

sensitive to time, the speed of selection and formation is critical and the time until each vendor 

commits to the AVRSC must be considered. Formation time is critical for responding in an agile 

manner to short-term, limited-time market opportunities. Organizations need to develop agile 

practices that will allow for this rapid partnership formation, which is an important way to gain a 
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competitive advantage for these short term market opportunities (Yusuf et al., 1999). As the time 

to market products needs to be reduced in an opportunistic market situation, the selection of 

partners and formation of the virtual enterprise needs to be rapid (Goldman, 1995; Gunasekaran, 

1998). Agile tools that can do this include information technology, organizational process 

adjustment, advanced manufacturing technology, advanced human resource practices, building 

trust and flexible contractual relationships (Gunasekaran, 1998; Nejatian and Zarei, 2013). 

Although we are not investigating the specific enablers for rapid formation of agile virtual 

enterprises, it can be assumed that organizations wishing to be considered as an AVRSC 

participant will adopt some of these agile virtual enterprise practices. Also, the individual time 

formation capabilities will be different depending on how much a specific organization has 

invested in these enablers. 

 

Second, decision-makers’ preferences may have some flexibility in this situation, and thus 

it may be attractive to have some choice among high-quality solutions. Consequently, a selection 

method allowing the decision-maker to choose from a diverse set of optimal and near-optimal 

solutions within a reasonable timeframe is of great value. 

 

This paper bridges this gap through a new optimization model that forges an efficient 

AVRSC, coupled with the solution method to find diverse solutions of high quality. The integer 

nonlinear optimization approach introduced in this paper, while bearing some basic similarities to 

other mathematical programming approaches, encompasses additional complexity. In particular, 

the method of Trapp and Konrad (2015) has until now been demonstrated solely in the context of 

binary integer optimization problems. The present work is the first to adapt their approach outside 
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of this domain, applying it to mixed integer programs, that is, binary integer programs with 

continuous variables. We then examine how this adaptation could be applied in agile virtual 

reverse supply chains. 

The Analytical Model and Methodology 

In this section we propose a novel optimization model together with an adaptation to a recently 

developed solution portfolio approach (Trapp and Konrad, 2015) to help identify a portfolio of 

AVRSC partners. We illustrate the decision-making process in the context of end-of-use mobile 

phones. This context sets the practical foundations for our methodology. An initial model is 

presented that includes a description of notation and model formulation, followed by 

transformations to make the model more tractable for solution. The technique to produce a 

portfolio of diverse and high-quality AVRSC solutions, based on a reformulated integer linear 

programming (MIP) formulation, is then presented. 

 

The Decision-Making Context 

We use the reverse supply chains of mobile phones as a basis to depict the problem considered in 

this paper. The extremely short life cycles and rapid advent of new technologies are placing end-

of-use, mobile phones at the forefront of reverse supply chain implementations (Franke, et al., 

2006; Geyer and Blass, 2010). Original equipment manufacturers (OEMs) such as Motorola, 

Samsung and Apple, and network service providers such as AT&T, Verizon, and T-Mobile are 

actively taking back end-of-use handsets as a service to customers as part of their corporate 

environmental responsibility program, or for compliance reasons. Both OEMs and service carriers 

typically outsource the operations of reverse supply chains of phones to third-party enterprises 
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(Geyer and Blass, 2010); for example, ReCellular, PaceButler, and International Recycling 

Network (IRN) in the U.S. have identified the collection of end-of-use mobile phones as a business 

opportunity. Apart from alliances with OEMs and network providers, these take-back enterprises 

team up with non-profit organizations and retailers to access the stock of retired handsets (e.g., 

Guide Jr. et al., 2005). 

 

The structure of a mobile phone reverse supply chain is similar to the general network 

illustrated in Figure 1 but has its own features, required processes and activities. Based on a 

comprehensive study (Neira et al., 2006), the major processes and activities of a reverse supply 

chain of end-of-use mobile phones is shown in Figure 2. It can be observed that the entire chain 

involves multiple stakeholders and each process contains complex activities that require 

specialized resources, capabilities and technologies. Furthermore, multiple players may exist at 

each process; for example, the collection step has a range of participants, including OEMs, network 

service providers, retailers, various collectors such as web-based collectors, non-governmental 

organizations and charities, and municipalities. Consequently, a great deal of coordination is 

imperative even at the collection point alone. 

 

Moreover, mobile phone resellers need to react in a timely manner given that depreciation 

timing and the value of phones may be relatively uncertain. If a reseller wishes to retain the 

significant value of the returned (end-of-use) phones the reverse logistics formation time for 

partners needs to be relatively rapid and efficient (Guide Jr. et al., 2005). 
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Figure 2: Reverse Supply Chain of Cell Phones (Adapted from Neira, et al, 2006) 

Unfortunately, not all organizations are proficient at managing the entire mobile phone reverse 

supply chain, nor do they possess all the necessary expertise and resources. Therefore, to seize 

business opportunities as well as to protect the environment and promote sustainability, it is 

necessary to forge a virtual enterprise with carefully selected vendors/brokers at each stage to 

handle the entire end-of-use product supply chain. This situation represents a single product type 

environment. While some reverse supply chain organizations may be able to manage multiple 

products, thereby adding greater complexity to their management, the multi-product version is 

outside the scope of this paper, and we leave it as a direction for future research. 

 



15 
 

Agile Virtual Reverse Supply Chain (AVRSC) Problem Formulation 

We now present the base optimization model to form optimal vendor team selections for a virtual 

reverse supply chain. Following the example of mobile-phone reverse supply chains, we consider 

forming a single-product virtual enterprise (such as PaceButler, specializing solely in mobile 

phones) and herein present our optimization model to select vendors to form such a single-product 

virtual reverse supply chain. 

 

Definitions of Sets and Parameters 

We first formalize the basic context described previously with mathematical notation. The problem 

environment considers that a number of reverse supply chain stages exist, denoted by set 𝒮𝒮. The 

entire supply chain is geographically dispersed into multiple regions (set ℛ). The regional aspect 

may exist to help organizations develop more efficient processing of returned products or 

materials. The number of regions could be altered depending on the configuration of the AVRSC. 

Within each region (𝑟𝑟) and stage (𝑠𝑠) we assume there are one or more service providers (𝒫𝒫𝑟𝑟𝑟𝑟) 

available. As in any supplier selection and evaluation approach, various business decisions, 

operations and supply chain strategic performance measures and parameters need to be considered. 

The modeling effort here explicitly includes the input parameters and performance metrics of 

investment cost or budget (𝐵𝐵), cycle or delivery time (𝑇𝑇), average quality (𝑄𝑄), and capacity – by 

satisfying demand (𝐷𝐷). Specific parameters that contribute to these overall performance metrics 

are introduced for each provider in each region and stage. 

 

While any of the above performance metrics may take priority, a crucial issue in (agile) 

virtual enterprise formation, to which we give precedence in our model below, is how quickly the 
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AVRSC can be formed. This criterion is especially critical if the marginal value of time of the 

product is high, such as in electronics. Thus, the responsiveness and effectiveness of the provider 

of a service for a specific stage in a region (formation time 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟) plays an especially important role 

in this model. Table 1 summarizes the definitions of sets and parameters used in our optimization 

model. 

Table 1: Sets and Parameters Used in Mathematical Programming Formulation 

Symbol Definition 

𝓢𝓢 Set of stages (e.g., collection, sorting, storage, disassembly, reintegration), indexed 
by 𝑠𝑠 

𝓡𝓡 Set of regions (e.g., local, regional, national), indexed by 𝑟𝑟 
𝓟𝓟𝒓𝒓𝒓𝒓 Set of providers for each region 𝑟𝑟 and stage 𝑠𝑠, indexed by 𝑝𝑝 
𝑩𝑩 Investment budget for the reverse supply chain formation process 

𝑻𝑻 Threshold for total cycle time, over all stages, for completing reverse supply chain 
process 

𝑫𝑫𝒓𝒓𝒓𝒓 Demand for region 𝑟𝑟 and stage 𝑠𝑠 
𝑸𝑸𝒓𝒓𝒓𝒓 Quality threshold for completing reverse supply chain process in region 𝑟𝑟, stage 𝑠𝑠 
𝒄𝒄𝒓𝒓𝒓𝒓𝒓𝒓 Cost of assigning region 𝑟𝑟, stage 𝑠𝑠 to provider 𝑝𝑝 
𝒂𝒂𝒓𝒓𝒓𝒓𝒓𝒓 The capacity available in region 𝑟𝑟, stage 𝑠𝑠 for provider 𝑝𝑝 
𝒒𝒒𝒓𝒓𝒓𝒓𝒓𝒓 Quality rating of region 𝑟𝑟, stage 𝑠𝑠 for provider 𝑝𝑝 
𝒕𝒕𝒓𝒓𝒓𝒓𝒓𝒓 Cycle time necessary to complete operations in region 𝑟𝑟, stage 𝑠𝑠 for provider 𝑝𝑝 
𝒇𝒇𝒓𝒓𝒓𝒓𝒓𝒓 Formation time necessary to "start up" operations in region 𝑟𝑟, stage 𝑠𝑠 for provider 𝑝𝑝 

 

Definition of Variables 

Binary variables 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 indicate which stages and regions are assigned to specific providers:  

 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 = �1  𝑖𝑖𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟 𝑟𝑟, 𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 𝑠𝑠 𝑖𝑖𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎 𝑠𝑠𝑟𝑟 𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝑖𝑖𝑎𝑎𝑟𝑟𝑟𝑟 𝑝𝑝;
0  𝑟𝑟𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑟𝑟.

 (1) 

 

Mathematical Programming Formulation 

The problem of selecting vendors to forge a team of providers that minimize the maximum 
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formation time of a virtual reverse supply chain is given as follows: 

 Minimize     𝑚𝑚𝑠𝑠𝑥𝑥
𝑟𝑟𝑟𝑟𝑟𝑟

�𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟� (2) 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠 𝑠𝑠𝑟𝑟    �
𝑟𝑟∈ℛ

�
𝑟𝑟∈𝒮𝒮

�
𝑟𝑟∈𝒫𝒫𝑟𝑟𝑟𝑟

𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝐵𝐵, (3) 

 �
𝑟𝑟∈𝒫𝒫𝑟𝑟𝑟𝑟

𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 𝐷𝐷𝑟𝑟𝑟𝑟, ∀  𝑟𝑟 ∈ ℛ, 𝑠𝑠 ∈ 𝒮𝒮, (4) 

 �
𝑟𝑟∈𝒫𝒫𝑟𝑟𝑟𝑟

�𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑄𝑄𝑟𝑟𝑟𝑟�𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 0, ∀  𝑟𝑟 ∈ ℛ, 𝑠𝑠 ∈ 𝒮𝒮, (5) 

 �
𝑟𝑟∈𝒮𝒮

𝑚𝑚𝑠𝑠𝑥𝑥
𝑟𝑟𝑟𝑟

�𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟� ≤ 𝑇𝑇, (6) 

  𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 ∈ {0,1}, ∀  𝑟𝑟 ∈ ℛ, 𝑠𝑠 ∈ 𝒮𝒮,𝑝𝑝 ∈ 𝒫𝒫𝑟𝑟𝑟𝑟. (7) 

 

Objective (2) seeks to minimize the maximum formation time to assemble the virtual enterprise. 

Constraint (3) enforces budgetary limitations on the entities chosen in the virtual enterprise, while 

constraint sets (4) and (5) ensure that demand and average desired quality, respectively, are met in 

every region-stage. Constraint set (6) ensures that the total cycle (delivery) time over all stages 

does not exceed a certain threshold, 𝑇𝑇. Together, (2)–(7) constitute a binary integer formulation 

that is nonlinear due to the 𝑚𝑚𝑠𝑠𝑥𝑥 expressions in both (2) and (6). Although (2)–(7) would likely be 

prohibitive to solve for realistic data instances, we next discuss how to reformulate these 

nonlinearities, making the resulting formulation amenable to solution with off-the-shelf MILP 

solvers such as CPLEX (IBM ILOG CPLEX, 2018). 
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Linearizing Formulation (2)–(7) 

The max expressions in (2) and (6) of binary integer program (2)–(7) can be linearized. The 

minimax form present in objective function (2) can be linearized by introducing a single 

continuous variable 𝑝𝑝  to be minimized, and simultaneously requiring 𝑝𝑝  to upper bound the 

formation time for every selected provider in region 𝑟𝑟 ∈ ℛ, stage 𝑠𝑠 ∈ 𝒮𝒮, and provider 𝑝𝑝 ∈ 𝒫𝒫𝑟𝑟𝑟𝑟. 

 

Moreover, the max function in the left-hand side of constraint (6) can also be linearized 

through disjunctive programming techniques by introducing additional auxiliary variables and 

constraints. Specifically, for each 𝑠𝑠 ∈ 𝒮𝒮  introduce a continuous variable 𝑦𝑦𝑟𝑟 , as well as binary 

variables 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟  for each region 𝑟𝑟 ∈ ℛ , stage 𝑠𝑠 ∈ 𝒮𝒮 , and provider 𝑝𝑝 ∈ 𝒫𝒫𝑟𝑟𝑟𝑟 , for a total of 

∑𝑟𝑟∈ℛ ∑𝑟𝑟∈𝒮𝒮 |𝒫𝒫𝑟𝑟𝑟𝑟| binary variables. 

 

For each stage 𝑠𝑠 ∈ 𝒮𝒮 , define constants 𝑠𝑠�̅�𝑟 = 𝑚𝑚𝑠𝑠𝑥𝑥
𝑟𝑟𝑟𝑟

�𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟� , and let 𝑦𝑦𝑟𝑟 = 𝑚𝑚𝑠𝑠𝑥𝑥
𝑟𝑟𝑟𝑟

�𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟� . 

These latter equality restrictions will be enforced implicitly via the following three constraint sets: 

 𝑦𝑦𝑟𝑟 ≥ 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟, ∀  𝑟𝑟 ∈ ℛ, 𝑠𝑠 ∈ 𝒮𝒮, 𝑝𝑝 ∈ 𝒫𝒫𝑟𝑟𝑟𝑟, (8) 

 𝑦𝑦𝑟𝑟 ≤ 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑠𝑠�̅�𝑟�1 − 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟�, ∀  𝑟𝑟 ∈ ℛ, 𝑠𝑠 ∈ 𝒮𝒮,𝑝𝑝 ∈ 𝒫𝒫𝑟𝑟𝑟𝑟, (9) 

 �
𝑟𝑟∈ℛ

�
𝑟𝑟∈𝒫𝒫𝑟𝑟𝑟𝑟

𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 = 1, ∀  𝑠𝑠 ∈ 𝒮𝒮. (10) 

 

Proposition 1  Constraint sets (8)–(10) implicitly ensure 𝑦𝑦𝑟𝑟 = 𝑚𝑚𝑠𝑠𝑥𝑥
𝑟𝑟𝑟𝑟

�𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟� for all 𝑠𝑠 ∈ 𝒮𝒮. 

Proof. The equality needs to hold for all stages 𝑠𝑠 ∈ 𝒮𝒮. Thus, consider any �̃�𝑠 ∈ 𝒮𝒮. Constraint set (4) 

ensures at least one 𝑥𝑥𝑟𝑟�̃�𝑟𝑟𝑟 = 1 as we can assume ∑𝑟𝑟∈ℛ 𝐷𝐷𝑟𝑟�̃�𝑟 > 0. Constraint set (8) implies that 𝑦𝑦�̃�𝑟 
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is at least as large as the largest 𝑠𝑠𝑟𝑟�̃�𝑟𝑟𝑟  value for which 𝑥𝑥𝑟𝑟�̃�𝑟𝑟𝑟 = 1 , hence max
𝑟𝑟𝑟𝑟

�𝑠𝑠𝑟𝑟�̃�𝑟𝑟𝑟𝑥𝑥𝑟𝑟�̃�𝑟𝑟𝑟� ≤ 𝑦𝑦�̃�𝑟 . 

Consider the two terms in the right-hand side of constraint set (9). The latter term 𝑠𝑠�̃̅�𝑟(1 − 𝑎𝑎𝑟𝑟�̃�𝑟𝑟𝑟) 

acts as a switch that allows for positive slack in the amount of 𝑠𝑠�̃̅�𝑟 (enough for any assignment in 

the first term) to assist in satisfying the constraint for all but one 𝑎𝑎𝑟𝑟�̃�𝑟𝑟𝑟 value, as specified in (10). 

Hence, the constraints (9) for �̃�𝑠 are satisfied, and can only be satisfied, when 𝑎𝑎𝑟𝑟�̃�𝑟𝑟𝑟 = 1 for the 

indices 𝑟𝑟 and 𝑝𝑝 for which both 𝑠𝑠𝑟𝑟�̃�𝑟𝑟𝑟 takes a maximum value and 𝑥𝑥𝑟𝑟�̃�𝑟𝑟𝑟 = 1, i.e., when positive slack 

is unnecessary. For all other 𝑟𝑟 and 𝑝𝑝 index values, the extra slack of 𝑠𝑠�̃̅�𝑟 ensures feasibility. This 

shows 𝑦𝑦�̃�𝑟 ≤ max
𝑟𝑟𝑟𝑟

�𝑠𝑠𝑟𝑟�̃�𝑟𝑟𝑟𝑥𝑥𝑟𝑟�̃�𝑟𝑟𝑟�. Such an assignment simultaneously ensures feasibility for constraint 

sets (8)–(10) and also that 𝑦𝑦�̃�𝑟 = max
𝑟𝑟𝑟𝑟

�𝑠𝑠𝑟𝑟�̃�𝑟𝑟𝑟𝑥𝑥𝑟𝑟�̃�𝑟𝑟𝑟�. The proof is now complete as the choice of �̃�𝑠 was 

arbitrary. ∎ 

Hence, we can replace nonlinear constraint set (6) with the following linear constraint in 

conjunction with (8)–(10) above:  

 �
𝑟𝑟∈𝒮𝒮

𝑦𝑦𝑟𝑟 ≤ 𝑇𝑇. (11) 

 

The final, linearized mixed-integer formulation for forging a virtual enterprise with minimized 

maximum formation time is: 

 𝑀𝑀𝑖𝑖𝑟𝑟𝑖𝑖𝑚𝑚𝑖𝑖𝑀𝑀𝑟𝑟    𝑝𝑝 (12) 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠 𝑠𝑠𝑟𝑟    𝑝𝑝 ≥ 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟, ∀  𝑟𝑟 ∈ ℛ, 𝑠𝑠 ∈ 𝒮𝒮,𝑝𝑝 ∈ 𝒫𝒫𝑟𝑟𝑟𝑟, (13) 

 �
𝑟𝑟∈ℛ

�
𝑟𝑟∈𝒮𝒮

�
𝑟𝑟∈𝒫𝒫𝑟𝑟𝑟𝑟

𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝐵𝐵, (14) 
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 �
𝑟𝑟∈𝒫𝒫𝑟𝑟𝑟𝑟

𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 𝐷𝐷𝑟𝑟𝑟𝑟, ∀  𝑟𝑟 ∈ ℛ, 𝑠𝑠 ∈ 𝒮𝒮, (15) 

 �
𝑟𝑟∈𝒫𝒫𝑟𝑟𝑟𝑟

�𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑄𝑄𝑟𝑟𝑟𝑟�𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 0, ∀  𝑟𝑟 ∈ ℛ, 𝑠𝑠 ∈ 𝒮𝒮, (16) 

 �
𝑟𝑟∈𝒮𝒮

𝑦𝑦𝑟𝑟 ≤ 𝑇𝑇, (17) 

 𝑦𝑦𝑟𝑟 ≥ 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟, ∀  𝑟𝑟 ∈ ℛ, 𝑠𝑠 ∈ 𝒮𝒮, 𝑝𝑝 ∈ 𝒫𝒫𝑟𝑟𝑟𝑟, (18) 

 𝑦𝑦𝑟𝑟 ≤ 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑠𝑠�̅�𝑟�1 − 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟�, ∀  𝑟𝑟 ∈ ℛ, 𝑠𝑠 ∈ 𝒮𝒮,𝑝𝑝 ∈ 𝒫𝒫𝑟𝑟𝑟𝑟, (19) 

 �
𝑟𝑟∈ℛ

�
𝑟𝑟∈𝒫𝒫𝑟𝑟𝑟𝑟

𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 = 1, ∀  𝑠𝑠 ∈ 𝒮𝒮, (20) 

 𝑝𝑝 ∈ ℝ;  𝑦𝑦𝑟𝑟 ∈ ℝ,∀  𝑠𝑠 ∈ 𝒮𝒮;  𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟,𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 ∈ {0,1},∀  𝑟𝑟 ∈ ℛ, 𝑠𝑠 ∈ 𝒮𝒮,𝑝𝑝 ∈ 𝒫𝒫𝑟𝑟𝑟𝑟. (21) 

 

Formulation (12)–(21) is a mixed (binary) integer linear program that is equivalent to (2)–(7), 

containing |𝑆𝑆| +1 continuous variables, 2 ⋅ [∑𝑟𝑟∈ℛ ∑𝑟𝑟∈𝒮𝒮 |𝒫𝒫𝑟𝑟𝑟𝑟|]  binary variables, and 3 ⋅

[∑𝑟𝑟∈ℛ ∑𝑟𝑟∈𝒮𝒮 |𝒫𝒫𝑟𝑟𝑟𝑟|] + 2 ⋅ |ℛ||𝒮𝒮| + |𝒮𝒮| + 2 constraints. While larger in size, this is advantageous 

because (12)–(21) can now be passed directly to the state-of-the-art mixed-integer programming 

solvers such as CPLEX (IBM ILOG CPLEX, 2018). We refer to the formulation (12)–(21) as 

AVRSCOPT, which can be used to find the optimal assignment of providers to regions and stages 

that minimizes the maximum time to formation while respecting constraints on budget, quality, 

and cycle time2. 

                                                 
2 At optimality, 𝑦𝑦𝑟𝑟∗ by construction assumes the exact value of the maximum cycle time for each stage 𝑠𝑠 ∈

𝒮𝒮. This is likely very valuable for practical analysis purposes, such as for examining the largest per-

stage cycle times, and especially when comparing multiple high-quality solutions. If this precision in 
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We note that there are some significant advantages to modeling provider decisions with 

binary variables, including that the same provider can appear in multiple stages and/or regions, 

simply by adding side constraints enforcing such relationships. Further, if minimum levels of 

activity, implications, disjunctions, and other logical conditions exist, they could also be readily 

added in our proposed formulation (12)–(21). 

 

Methodology for Generating Diverse, High-Quality Solutions 

Having linearized the AVRSCOPT formulation, we can now use an off-the-shelf optimization solver 

to identify a single optimal solution (assuming one exists and can be found). However, given the 

uncertain planning environment surrounding the formation of virtual reverse supply chains, it may 

be of interest to have a collection of high-quality solutions, and particularly so if they are 

structurally distinct from one another. It is the identification of high-quality and yet diverse 

solutions to AVRSCOPT that we now address. 

 

Rationale for Portfolios of High-Quality and Diverse Solutions 

A portfolio of diverse, high-quality solutions can empower managers with greater flexibility in 

their decision-making, as the additional solutions can be used to weigh subtle decision factors that 

are not easily modeled. Some of these uncertainties may arise from intangible factors and 

                                                 
𝑦𝑦𝑟𝑟∗ is not necessary, then constraint sets (19), (20), and the binary 𝑎𝑎 variables may be omitted without 

impacting the correctness of the model with respect to the optimal assignment decisions 𝑥𝑥∗ and 

minimized maximum formation time 𝑝𝑝∗. 
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managerial preferences or perceptions that may be problematic to quantify. For example, there 

may be situations in which a decision-maker has a historical perspective or prior experience 

regarding certain service providers (e.g., some may be poorer collaborators) that would be difficult 

to express analytically. While the standard output of an optimization solver, being only a single 

solution, does not offer such flexibility, a portfolio of diverse, high-quality solutions can offer 

more alternatives with respect to provider selection, and thereby provides the rationale for such 

portfolios. 

 

Novelty of Present Work with Respect to High-Quality and Diverse Solution Methodology 

For the sake of brevity, we outline the solution methodology to generate a set of diverse optimal 

and near-optimal solutions in Appendix A in the Online Companion. For complete details on the 

methodology, we refer the interested reader to Trapp and Konrad (2015). 

 

We remark on two novel contributions that the present work makes with respect to this 

methodology. Specifically, this is the first demonstration of the technique to problems beyond 0-

1 integer optimization problems, namely to mixed 0-1 integer problems, by evaluating diversity 

precisely over the structural binary variables, that is, the 0-1 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟∗  values concerning which 

providers to select. Because the other 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟∗ ,𝑦𝑦𝑟𝑟∗  and 𝑝𝑝∗  variables are auxiliary and used for 

bookkeeping, their interpretation contributes nothing meaningful with respect to diversity. Hence, 

we ensure the integrity of the computed diversity by considering only the structural decision 

variables. Second, in the present work there are some additional considerations necessary to 

normalize the two objective terms of diversity and quality, which we separately demonstrate using 

disjunctive programming techniques in Appendix B in the Online Companion. 
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Evaluating Collective Diversity 

Let 𝑿𝑿 be the set of solutions generated using the methodology. The collective diversity of the 

solutions in 𝑿𝑿 can be assessed using the 𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏(𝑿𝑿) metric (31) (Danna and Woodruff 2009), where 

𝑟𝑟 represents the dimension of the 𝑥𝑥 vector in any solution: 

 
𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏(𝑿𝑿) =

2
𝑟𝑟|𝑿𝑿|(|𝑿𝑿| − 1)�

𝑟𝑟∈ℛ

�
𝑟𝑟∈𝒮𝒮

�
𝑟𝑟∈𝒫𝒫𝑟𝑟𝑟𝑟

� � �𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟
(𝑗𝑗)∗ − 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟

(ℎ)∗� .
|𝑿𝑿|

ℎ=𝑗𝑗+1

|𝑿𝑿|−1

𝑗𝑗=1

 

. 

(22) 

 

The 𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏(𝑿𝑿) metric takes a value between 0 and 1, and provides the average (scaled) pairwise 

distance between all solutions in 𝑿𝑿. Larger values of 𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏(𝑿𝑿) indicate portfolios having greater 

collective diversity. This is because the inner absolute value term, which takes values of 0 or 1, 

causes the 𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏(𝑿𝑿) expression to increase when it evaluates to 1, indicating a difference between 

variable values between two solutions 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟
(𝑗𝑗)∗ and 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟

(ℎ)∗. 

 

Illustrative Example 

To further motivate the impending computational study, we provide an illustrative example on a 

small test instance with two regions, three stages, and three or four providers in each region-stage. 

We characterize four types of solutions to illustrate the contribution of our methodology. 

Specifically, the four solutions are: an optimal solution (i.e., 𝒙𝒙(0)∗); a high-quality and relatively 

diverse solution from 𝒙𝒙(0)∗ – as generated by the aforementioned methodology; a solution that is 

high-quality, but not very diverse from 𝒙𝒙(0)∗; and finally, a solution that is diverse, but not of high 

quality. To keep the example manageable, we depict each of the four solutions featuring the 
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capacity that selected providers can make available; however, we leave out from the figure 

additional complicating details such as meeting budget, quality, and cycle time restrictions to keep 

the depiction from being too busy. Highlighting the available capacity of each solution is sufficient 

to characterize the four types of solutions. These four solutions are depicted in Figure 3. 

 

The first row in Figure 3 shows an optimal solution 𝒙𝒙(0)∗ that happens to have a minimized 

maximum formation time of 40 days (though this metric is not visually displayed), while the fourth 

row contrasts a second solution that is quite diverse from 𝒙𝒙(0)∗ – in fact, greater than 70% pairwise 

diversity, as measured by (22). However, its quality lags behind, as the formation time is 44 days. 

The third row depicts a solution that shares with 𝒙𝒙(0)∗ the same minimized maximum formation 

time of 40 days; however, when comparing to top row, it can be seen that its solution structure is 

not very diverse from that of 𝒙𝒙(0)∗ . The second row presents a solution that is both high in quality 

(indeed, it is another optimal solution, having formation time of 40 days), and yet diverse from 

𝒙𝒙(0)∗; in fact, expression (22) exceeds 35% pairwise diversity with respect to 𝒙𝒙(0)∗ . 
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Region 1 Region 2 

 

Stage 1: 
Collection 

Stage 2: 
Pre-Processing 

Stage 3: 
Refurbishing 

Stage 1: 
Collection 

Stage 2: 
Pre-Processing 

Stage 3: 
Refurbishing 

 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 

Optimal solution 49 0 0 51 57 43 0 0 50 0 50 48 0 52 0 0 0 53 47 0 53 47 

High-quality and diverse 49 0 0 51 48 0 52 0 50 0 50 43 57 0 0 35 0 65 0 52 48 0 

High-quality, less diverse 49 0 0 51 57 43 0 0 50 0 50 48 0 52 0 35 0 65 0 52 48 0 

Diverse, not high-quality 0 51 49 0 31 0 34 35 0 47 53 0 40 33 27 0 39 0 61 55 0 45 

Figure 3: Visualizing solutions for a small test instance with two regions (first tier / row), three stages (second tier / rows), and multiple 

providers (third tier / row). Four types of solutions are visualized in the subsequent rows: optimal with minimized maximum formation 

time of 𝒗𝒗∗ = 𝟒𝟒𝟒𝟒 in the first row, high-quality and diverse from optimal with 𝒗𝒗∗ = 𝟒𝟒𝟒𝟒 in the second row; high-quality with 𝒗𝒗∗ = 𝟒𝟒𝟒𝟒, 

but not diverse from optimal in the third row; and not high-quality with 𝒗𝒗∗ = 𝟒𝟒𝟒𝟒, but diverse from optimal in the fourth row. Each cell 

denotes the percentage of capacity made available by a provider (e.g. P1) for a particular region and stage, where darker shadings 

indicate greater capacity made available. By comparing rows (in particular, the first and second rows), the existence of high-quality 

solutions that are also diverse becomes clear. 
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Computational Experiments 

It is useful to investigate the behavior of the methodology to find multiple high-quality and diverse 

solutions to the optimization model under varying conditions. We propose test classes for 

AVRSCOPT in a mobile phone context and subsequently discuss the computational performance of 

the methodology. 

 

Computational Setup 

We propose three test classes. The number of stages, |𝒮𝒮|, is likely to be rather static, and we take 

it to be |𝒮𝒮| ∈ {2,3,4,5} in all experiments. Similarly, for any given region 𝑟𝑟 and stage 𝑠𝑠, we take 

the number of potential providers |𝒫𝒫𝑟𝑟𝑟𝑟| ∈ {3,4,5}. The three test classes fundamentally differ in 

the number of regions ℛ; we separate them into small, medium, and large. The small test class 

features ℛ ∈ {2,3,4,5}, the medium class has ℛ ∈ {6,7,8,9,10}, while the large test class has ℛ ∈

{[10,50] ∩ ℤ}, so that the classes experience increasing number of regions from small, to medium, 

to large. For each of the three test classes we randomly generated 1,000 test instances. The largest 

of these was a test instance of ℛ = 50, 𝑆𝑆 = 5, and over 1,000 total potential providers, leading to 

a formulation (12)–(21) with more than 2,000 binary variables and 3,500 constraints. 

 

Other key parameters include formation time 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟, which was set to between 15 and 45 

days for each provider, cycle time 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟, taken to be between 20 and 36 days for each stage, and 

demand 𝐷𝐷𝑟𝑟𝑟𝑟, which after some careful calculations was taken to be in the range of 654 and 1,308 
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kilograms available for collection per day, or between 19,620 and 39,240 per month3,4. All of the 

parameters were independently generated and uniformly distributed over their respective domains. 

 

Computational Environment 

Our approach was coded in C++ and compiled using g++ version 4.4.7 20120313 (Red Hat 4.4.7-

4) using 2 Intel(R) Xeon(R) E5-2690 CPUs each with 8 cores running at 2.90GHz and 64GB 

RAM. All optimization was performed using the callable library of IBM ILOG CPLEX 12.5.1 

(IBM ILOG CPLEX, 2019). We set a one-hour limit to solve any optimization problem, and 

prioritized numerical stability by setting the CPX_NUMERICAL_EMPHASIS parameter to 

CPX_ON. We set 𝑃𝑃 = 10 to return, where possible, ten diverse, high-quality solutions. Even so, 

most individual problems solved in seconds. 

 

Summary of Computational Results 

Table 2 summarizes key performance metrics on the 1,000 test instances for each of the three 

classes. In particular, the algorithm returned a set of 𝑿𝑿 solutions, 0 ≤ |𝑿𝑿| ≤ 10, for all 3,000 

instances. The second column of Table 2 details the number of instances that returned (|𝑿𝑿| =) 10 

solutions, while the other four columns provide, for each respective class, mean values for four 

measures over those instances that returned a full |𝑿𝑿|=10 solutions. Standard deviations are 

                                                 
3 This information is derived from actual industry sources for cell phones. Canalys. Smart phones 

overtake client PCs in 2011. Available from: https://www.canalys.com/newsroom/smart-phones-

overtake-client-pcs-2011 [cited 2019 July 5] 
4 Environmental Protection Agency. Electronics Waste Management in the United States through 2009; May 2011. 

Available from https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100BKKL.TXT [cited 2019 July 5] 

https://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
https://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100BKKL.TXT
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recorded in parentheses, and mean runtimes are measured in CPU time. 

Table 2: Summary Performance Metrics of Solved AVRSCOPT Instances, by Test Classes 

 
Test 
Class 

Count of 
|𝑿𝑿|=10 

Mean Runtime 
To Find 𝑿𝑿 (s) 

Mean 
Iterations 

Mean 
Gap 

Mean 
Dbin(𝑿𝑿) 

Small 770 50.74 (83.90) 1.88 (0.33) 0.09 (0.09) 0.44 (0.09) 
Medium 385 33.01 (72.01) 1.78 (0.41) 0.05 (0.04) 0.43 (0.09) 

Large 99 92.34 (148.58) 1.59 (0.49) 0.02 (0.03) 0.48 (0.06) 

 

The small test class featured the least number of infeasible test instances (1,000 – 770 = 230); as 

the randomly generated test instances grew in size, so did the tendency for the resulting models to 

be infeasible. Over all test classes, the average runtime to generate a portfolio of 10 solutions was 

48.6 seconds, which is a relatively modest amount of time in our estimation. Even for the largest 

of test classes, the algorithmic runtime was in our opinion well within the time needed to make a 

critical, yet strategic, decision on constructing a reverse virtual supply chain. Over all test classes 

and instances, the maximum runtime for any instance was 624.6 seconds, amounting to about 10 

minutes of CPU time. These short runtimes were directly related to the low iteration counts (on 

average, less than two) of the implementation of Dinkelbach’s algorithm, referenced further in 

Appendix A in the Online Companion, which is known to have super-linear convergence 

properties (Schaible, 1976). This bodes well if the model were to be extended in the future; while 

likely larger in size, it may still be amenable to finding solutions via off-the-shelf mixed-integer 

programming solvers. 
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Discussions on Quality and Diversity of Solutions to AVRSCOPT 

We now address the performance of the methodology with respect to the diversity and quality of 

generated solutions. 

 

Analysis of Solution Diversity 

Recall that the collective diversity calculated in (22) and reported in Table 2 is measured over 

precisely the 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟∗  components of all solutions in 𝑿𝑿, as they are the only variables over which 

diversity is meaningful. Table 2 displays some rather high observations for mean diversity metrics 

across all three test classes, specifically with respect to other studies (Trapp and Konrad 2015; 

Petit and Trapp 2015; Petit and Trapp 2019; Trapp and Sarkis 2016). This means that the solutions 

in the set 𝑿𝑿 are quite diverse, and specifically there is significant flexibility in choice of suitable 

providers to meet the specified demand in all region-stage pairs. Looking across the three test 

classes individually, there does not appear to be a significant trend towards more or less diversity 

as the test instances grow in size from small to medium to large. This implies that there is adequate 

flexibility inherent in the model with respect to the choice of providers. 

 

Analysis of Solution Quality 

The quality of any solution 𝑥𝑥  can be quantified by determining its gap from optimality (i.e., 

distance from the minimum objective function value 𝑀𝑀∗). The optimality gap is expressed in the 

following manner, where 𝜖𝜖 is taken to be a very small but positive number: 

 𝑝𝑝 − 𝑀𝑀∗ + 𝜖𝜖
𝑀𝑀∗ + 𝜖𝜖

, (23) 
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where 𝑝𝑝 represents the minimized maximum formation time as per AVRSCOPT. In all cases, the 

mean optimality gap was within 10% of the global optimal solution, indicating the solutions were 

of high quality, especially in light of the fact that, as in many real-life scenarios, many of the data 

appearing in formulation (12)–(21) are likely to come from best-guess approximations. Across the 

three test classes, the mean optimality gap appears to be largest in the small test class, where a 

mean gap of 0.09 was observed, with the medium test class coming in at 0.05, and the large at 

0.02. 

 

Thus, there is a clear decreasing trend in the mean optimality gap as the test class sizes 

grow; equivalently, it can be observed that the quality of the solution set 𝑿𝑿 improves with the size 

of the test class. For AVRSCOPT, this is likely due to the objective function and its relation to the 

randomly generated values for the 𝒇𝒇𝒓𝒓𝒓𝒓𝒓𝒓 parameter. For small test instances, there are at most 25 

region-stage pairs, allowing for a greater fluctuation in the minimum possible maximum formation 

time. For test instances in the largest class, however, there can be up to 250 region-stage pairs; for 

such an instance it is very unlikely to find an optimal objective function value much below the 

maximum possible value of the 𝒇𝒇𝒓𝒓𝒓𝒓𝒓𝒓 parameter, hence the gaps for alternate solutions are likely to 

be smaller. 

 

Figure 4, Figure 5, and Figure 6 depict the mean optimality gap distribution as expressed 

in (23) for each instance, for the small, medium, and large test classes, respectively. In each figure, 

the majority of the solutions are in the first two bins that have the smallest optimality gap (i.e., 
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those that are closer to optimal), thus demonstrating that most solutions tend to be high-quality. 

Hence, they are another representation of the high quality of the obtained diverse solution sets. 

 

 

Figure 4: Histogram of Mean Optimality Gap in Solution Sets: Small Test Class 
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Figure 5: Histogram of Mean Optimality Gap in Solution Sets: Medium Test Class 

 

 

Figure 6: Histogram of Mean Optimality Gap in Solution Sets: Large Test Class 
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Discussions and Conclusions 

Given the numerous sustainability and business concerns facing organizations and their product 

streams, the issue of “closing-the-loop” in supply chains has received increased attention over the 

past two decades (Zhu et al., 2008). Critical to closing the loop is the effective use of reverse 

supply chains. Because many organizations do not have the necessary capabilities to effectively 

and efficiently manage the entire reverse supply chain, turning to fourth party service providers 

for expertise and resources may be a prudent strategy. Market opportunities and sensitivities can 

drive the need for short-term, product or material-specific reverse supply chains. In such cases, a 

rapid formation of an agile virtual enterprise for reverse supply chain activities is essential, and 

was the main motivation for the present study. The models and decision tools introduced in this 

paper can prove valuable to OEMs and others whose products need to be managed in an extended 

producer responsibility or related context. The techniques put forth both offer practical value, and 

also contribute to the research of diverse optimal and near-optimal solutions. 

 

We developed a mathematical programming representation for the problem of composing 

an agile virtual enterprise in the context of end-of-use mobile phones. The model has explicitly 

incorporated a variety of infrastructure and performance characteristics. For each region and stage 

in the reverse supply chain process, the formulation seeks to choose a set of providers that can 

meet the specified demand and quality, and time limitations, with the aim of minimizing the 

maximum formation time for the entire virtual reverse supply chain. While the original integer 

formulation is nonlinear, we introduce two linearizations that make it amenable to state-of-the-art 

mixed-integer linear programming solvers. 
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Practical and Managerial Implications 

There are considerable challenges and uncertainties inherent in assembling an agile virtual 

enterprise. To this end, we discussed how to obtain a portfolio of optimal and near-optimal 

solutions that explicitly incorporate diversity, so as to provide flexibility in managerial decision-

making. This flexibility is particularly useful in situations such as forming a virtual enterprise, 

where there exists intangible and unquantifiable dynamics that affect decision-making. This 

technique improves computational results by providing a variety of high-quality solutions, while 

addressing concerns related to the judgmental aspects of many parameters and data that is acquired. 

Managers, organizations and decision makers can parlay the solutions to determine the 

most effective partnerships from a diverse set of solutions. For example, there may be some 

difficulty in determining and incorporating intangible factors such as some specific partner 

combinations being historically less than effective collaborators. Our approach provides managers 

the opportunity to use intuition and informal knowledge to identify the ideal high quality solution. 

Thus providing a portfolio of such solutions yields a more flexible and realistic opportunity to 

identify an effective solution, given political, social, and other intangible factors. 

While we considered mobile phone technology, our approach is applicable to other 

situations that require rapid reverse supply chain formation, are time-sensitive, and need to 

consider intangible factors. Construction management, product recalls, and natural disaster 

response are perhaps other areas that could benefit from the techniques proposed.  Using the results 

from our approach, managers in these and similar situations can effectively parlay tangible and 

intangible factors for evaluation of the partnership formation system. As with any model or set of 

considerations, the necessary data needs to be developed, stored and acquired, for these models to 
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prove effective.  Setting up a user-friendly decision support system to show alternatives 

effectively, will be an important future step for additional managerial buy-in.  

Managers tend to adopt and apply solutions that they understand – a critical aspect of 

managerial buy-in and acceptance (Churchman, 1964). While the “high-quality” and “diverse” 

solution terminology has distinct specific mathematical definitions that can vary based on the 

practical settings, the practical philosophy and approach is intuitive.  We also believe that our 

approach can provide greater managerial acceptance because, by providing multiple solutions, it 

allows for managerial discernment to play a role (Camm 2014). The diverse solution set may also 

provide managers a starting point for discussion for strengths and weaknesses, even political 

considerations, of the various comparative sets (Siebert and Keeney 2015). Such discussion may 

allow for identification of hidden factors that may need to be explicitly included in the optimization 

model, as well as any sequential decision models that can more effectively incorporate intangible 

factors into the managerial decision-making environment. 

 

Research Implications 

Moreover, the present context is the first application to adapt the solution technique of 

Trapp and Konrad (2015) to a mixed binary integer linear program, i.e. one that contains 

continuous decision variables. The insight that the approach is applicable to cases where 

formulation transformations involve only auxiliary continuous variables is an important 

contribution to the developing diverse optimal and near-optimal solution paradigm (Trapp and 

Konrad 2015; Petit and Trapp 2015; Petit and Trapp 2019; Trapp and Sarkis 2016). Our 

computational results demonstrate that, for moderately-sized problems, portfolios of solutions can 

be quickly generated that feature diverse optimal and near-optimal solutions. 
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Although the contributions of this work are both practical and theoretical, some limitations 

exist for the application and model. At the same time, these limitations provide opportunities for 

further development and research. First, the modeling effort included only a single product with a 

single objective. Extending this effort to include multiple products, multiple time periods, and 

alternate or multiple objectives (e.g. cost), are all possibilities for future research directions. 

Although experimentation with realistic data and problem scope were incorporated, actual data 

and implementation in a real-world setting would be beneficial. Issues in real-world settings such 

as data incompleteness, the feasibility of acquiring all necessary information, and acceptance by 

management may be limitations of the model and its practical application, and should be further 

investigated. Finally, the solution set is a portfolio of high-quality and diverse solutions for a given 

set of constraints and performance metrics. There may be additional managerial, perceptual and 

intangible data (e.g. trust, reputation, legitimacy, relationships) that are not easy to model within 

the context of an optimization program. To overcome some of these limitations, linkage of the 

outcomes from the model introduced here to other multiple criteria decision approaches, such as 

AHP/ANP that can incorporate a broader set of intangible measures and decision factors, can 

enhance the methodology. 

 

Supply chain management researchers have ample opportunities to help develop analytical 

models to solve emergent concerns of various economic, sustainable, social, and regulatory 

pressures. This paper builds not only on the foundations for virtual enterprises and reverse supply 

chains, but also provides insight into additional research avenues where some of these pressing 

issues can be more fully understood and addressed. 
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Appendix A: Details on Methodology to Generate Diverse, High-Quality Solutions 

 

In an effort to be self-contained, we discuss additional details on the methodology we use to 

generate a diverse set of high-quality solutions to AVRSCOPT. Some of this material is necessarily 

similar in nature to Trapp and Konrad (2015) and Trapp and Sarkis (2016). 

 

Given two binary vectors of the same dimension, diversity between the two can be viewed 

as the sum of the vector indices for which the corresponding values are not in agreement. For 

example, the diversity between vector A = [0 0 1 0] and vector B = [1 1 1 0] is 2. This measure 

can be expressed, for example, using the 𝐿𝐿1 (Manhattan, or taxicab) distance, and it naturally 

extends to a collective diversity measure when there are more than two binary vectors, as will be 

discussed below. In general, however, it can be challenging to obtain a portfolio of solutions that 

are both high in quality and yet collectively diverse. There are two primary reasons. First, solutions 

that score relatively high in quality tend to evaluate poorly with respect to diversity, due to 

structural similarities. Second, diverse solutions typically come from disparate areas of the feasible 

region, and do not likely share similar quality characteristics. When both high quality and diversity 

are emphasized, this situation produces conflict. 

 

Let us denote by 𝑆𝑆 the set of constraints (13)-(20) together with the variable domains 

expressed in (21). For the sake of exposition, assume AVRSCOPT has at least one feasible solution, 

and an optimal solution vector exists: 𝑥𝑥∗ = (𝑝𝑝∗, 𝑦𝑦𝑟𝑟∗,𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟∗ ,𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟∗  ∀ 𝑟𝑟 ∈ ℛ, 𝑠𝑠 ∈ 𝒮𝒮,𝑝𝑝 ∈ 𝒫𝒫) , with 

optimal objective function value 𝑀𝑀∗. Let 𝑿𝑿 denote the set of all presently identified solutions, so 

that initially 𝑿𝑿 = {𝑥𝑥∗}, and consider the following fractional objective: 
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  𝑅𝑅(𝑥𝑥) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅 𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅𝑏𝑏𝑆𝑆𝑏𝑏 𝐷𝐷𝑏𝑏𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑏𝑏𝑅𝑅𝐷𝐷
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅 𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑏𝑏𝑆𝑆𝑟𝑟𝑅𝑅𝑅𝑅𝑏𝑏𝑆𝑆𝑏𝑏 𝑏𝑏𝑏𝑏 𝑂𝑂𝑏𝑏𝑗𝑗𝑅𝑅𝑂𝑂𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅 𝑄𝑄𝑆𝑆𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝐷𝐷

.   (24) 

 

Objective (24) expresses the ratio of the relative solution diversity to the relative 

deterioration in the objective function quality, namely the minimized maximum formation time. 

Assume any other feasible solution exists �̅�𝑥 with maximum formation time �̅�𝑝. The denominator 

representing the deterioration in objective quality can be obtained with �̅�𝑝 − 𝑀𝑀∗ + 𝜖𝜖 (where 𝜖𝜖 is a 

small positive value, ensuring the denominator takes a nonzero value in the event �̅�𝑝 = 𝑀𝑀∗). The 

diversity of �̅�𝑥 with respect to the elements in 𝑿𝑿 can similarly be represented and will be discussed 

below. 

To find a single high-quality solution that is diverse from 𝑥𝑥∗, we replace the objective of 

AVRSCOPT with fractional objective (24), to be maximized, referring to the resulting formulation 

as M-AVRSCOPT. Although (24) is nonlinear, it is possible to solve this class of optimization 

problem, namely a nonlinear fractional binary integer program, via Dinkelbach’s algorithm 

(Dinkelbach, 1967). This approach solves a sequence of linearized problems related to the original 

nonlinear fractional programming problem. Any solutions in 𝑿𝑿, for example 𝑥𝑥∗, can be prevented 

from being revisited using linear expressions that forbid the binary variable values (Balas and 

Jeroslow, 1972): 

 ∑𝑏𝑏:𝑥𝑥𝑖𝑖
∗=0 𝑥𝑥𝑏𝑏 +  ∑𝑏𝑏:𝑥𝑥𝑖𝑖

∗=1 (1 − 𝑥𝑥𝑏𝑏) ≥ 1.      (25) 

 

Then, solving M-AVRSCOPT with (25) will generate a solution 𝑥𝑥(1)∗  distinct from 

𝑥𝑥∗ = 𝑥𝑥(𝑆𝑆)∗  that maximizes the ratio in (24), that is, it simultaneously emphasizes solution quality 

and diversity (with respect to all elements in 𝑿𝑿), where diversity is computed via the centroid 
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diversity measure. The centroid is the vector composed of the component-wise average of each 

element over all solutions in 𝑿𝑿: 

 𝒄𝒄 = �𝒄𝒄𝑏𝑏 = 1
ℎ
∑ 𝑥𝑥𝑏𝑏

(𝑗𝑗)∗ℎ−1
𝑗𝑗=0 �.       (26) 

 

This centroid diversity metric computes the distance of any vector 𝑥𝑥 ∈ {0,1}𝑏𝑏 from the 

elements of 𝑋𝑋 in the following fashion: 

 ∑ 𝒄𝒄𝑏𝑏𝑏𝑏
𝑏𝑏=1 +  ∑ (1 − 2𝒄𝒄𝑏𝑏)𝑥𝑥𝑏𝑏𝑏𝑏

𝑏𝑏=1 .       (27) 

 

Putting all of this together, now consider a sequential process of finding alternate solutions 

for some iteration ℎ > 1. This entire process can be repeated as often as desired, as long as there 

remain feasible solutions, to generate a solution set 𝑿𝑿. An overview of this process is depicted in 

Figure 7. 

 

 

Figure 7: Methodology for Generating Diverse Set of High-Quality Solutions to 

AVRSCOPT. 

Additional information on these metrics, as well as an implementation of Dinkelbach’s 

algorithm, are contained in Trapp and Konrad (2015). Details on normalizing the ratio objective 

function can be found in Appendix B. 
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Appendix B: Normalizing Objective Function Terms of Diversity and Quality 

Determining the normalization factor ℱℎ  for iteration ℎ requires the solution of two additional 

optimization problems. While the denominator in ℱℎ is straightforward to compute, the numerator 

involves knowledge of the maximum feasible formation time to assemble the reverse logistics 

virtual enterprise. This can be accomplished via a maximax formulation that modifies formulation 

(12) – (21) using disjunctive programming techniques. Specifically, the following five steps 

support the transition: 

(1) Add a new continuous variable 𝑝𝑝, and replace objective function (12) to maximize 𝑝𝑝; 

(2) Add ∑𝑟𝑟∈ℛ ∑𝑟𝑟∈𝒮𝒮 |𝒫𝒫𝑟𝑟𝑟𝑟| auxiliary binary variables 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟; 

(3) Remove constraint set (13); 

(4) Add the following set of constraints, where 𝑓𝑓𝑚𝑚𝑅𝑅𝑥𝑥  and 𝑓𝑓𝑚𝑚𝑏𝑏𝑏𝑏  are the maximum and 

minimum formation times, over all 𝑟𝑟, 𝑠𝑠, and 𝑝𝑝, respectively, i.e. 𝑓𝑓𝑚𝑚𝑅𝑅𝑥𝑥 = max
𝑟𝑟𝑟𝑟𝑟𝑟

�𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟� and 

𝑓𝑓𝑚𝑚𝑏𝑏𝑏𝑏 = min
𝑟𝑟𝑟𝑟𝑟𝑟

�𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟�: 

 𝑝𝑝 ≤ 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑓𝑓𝑚𝑚𝑅𝑅𝑥𝑥(1 − 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟) + (𝑓𝑓𝑚𝑚𝑅𝑅𝑥𝑥 − 𝑓𝑓𝑚𝑚𝑏𝑏𝑏𝑏)(1 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟),

∀  𝑟𝑟 ∈ ℛ, 𝑠𝑠 ∈ 𝒮𝒮,𝑝𝑝 ∈ 𝒫𝒫𝑟𝑟𝑟𝑟; 
(28) 

(5) Add a single, final constraint:  

 �
𝑟𝑟∈ℛ

�
𝑟𝑟∈𝒮𝒮

�
𝑟𝑟∈𝒫𝒫𝑟𝑟𝑟𝑟

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1. (29) 

 

These modifications are designed to allow for 𝑝𝑝 to take the largest formation time from those 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 

variables for which 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 = 1. The optimal value of 𝑝𝑝∗ is used as the value for the numerator in the 

normalization factor ℱℎ. 

 

Proposition 2 The maximax reformulation (12)–(21) ensures 𝑝𝑝 takes the value of the maximum 
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formation time among all feasible solutions. 

 

Proof. The new objective seeks to identify the largest formation time 𝑝𝑝. An obvious upper bound 

for 𝑝𝑝 is 𝑓𝑓𝑚𝑚𝑅𝑅𝑥𝑥, though it is possible that no feasible solution exists with 𝑝𝑝 = 𝑓𝑓𝑚𝑚𝑅𝑅𝑥𝑥 due to other 

constraints. For any 𝑟𝑟, 𝑠𝑠, and 𝑝𝑝, there are four cases for the corresponding constraint set (28) 

depending on the assignments of binary variables 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. When 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 = 0, constraint set 

(28) becomes trivially satisfied. When 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 = 1 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0 , it can be seen that again (28) 

provides an upper bound no tighter than 𝑓𝑓𝑚𝑚𝑅𝑅𝑥𝑥. Now constraint (29) assigns one and only one 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

variable to unity, and so when both 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 = 1 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1, (28) becomes 𝑝𝑝 ≤ 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟. Given the 

modified objective to maximize 𝑝𝑝, an optimal solution will feature 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1 for indices 𝑟𝑟, 𝑠𝑠, and 

𝑝𝑝 for which there is no larger 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 value with 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 = 1 feasible. Otherwise, the objective could 

strictly improve. This completes the proof. ∎ 
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