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ASYMPTOTICS OF SOLUTE DISPERSION
IN PERIODIC POROUS MEDIA*

R. N. BHATTACHARYA, V. K. GUPTA:I:, AND H. F. WALKER

Abstract. The concentration C(x, t) of a solute in a saturated porous medium is governed by a
second-order parabolic equation OC/dt =-U0b" VC +1/2 DjO2C/xi Oxj. In the case that b is periodic and
divergence free, and Di are constants and ((D)) positive definite, the concentration is asymptotically
Gaussian for large times. This article analyzes the dependence of the dispersion matrix K of the limiting
Gaussian distribution on the velocity parameter U0 and the period "a." It is shown that each coefficient K,
is asymptotically quadratic in a Uo if b-/ has a nonzero component in the null space of b-V, and
asymptotically constant in aUo if b-/i belongs to the range of b. V. It is shown in a more general context
that K depends only on aUo. An asymptotic expansion of the Cramer-Edgeworth type is derived for
concentration refining the Gaussian approximation.
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1. Introduction. Consider a nonreactive dilute solute injected into a porous
medium saturated with a liquid under nonturbulent flow. Suppose the following
parabolic equation governing solute concentration C(x, t) at position x at time holds
at a certain space-time scale:

(1.1)

OC
2 i,j=l OXi OXj

DO C -i=l x/ Uob, C

X= (Xl, X2,""", Xn) t n, t>0.

In (1.1), Uob(x/a) Uo(bl(X/a), b2(x/a)," ., b,(x/a)) denotes the solute drift veloc-
ity vector, D(x/a) ((Do(x/ a))) is a positive-definite symmetric matrix, and Uo, a
are positive scalars. The parameters Uo and a scale liquid velocity and spatial length,
respectively. Although in the physical context n 3, for mathematical purposes we let
n be arbitrary.

The solution C(x, t) of (1.1) is given by (Friedman (1975, pp. 139-144)),

(1.2) C(x, t)= f h(z)p(t; z,x) dz,

where h is the continuous, bounded, initial concentration, and p(t; z, x) is the funda-
mental solution of (1.1). Conditions on the coefficients bi(x), Dig(x) that guarantee the
uniqueness and necessary smoothness of the fundamental solution are assumed
throughout. Now p(t; z, x) is also the transition probability density function of the
Markov process X(t) defined by It6’s stochastic differential equation

(1.3)
dX(t) Uob(X(t)/a) dt+tr(X(t)/a) dB(t),

X(0) =z,
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where or(x) is the positive-definite matrix the square of which is D(x) and B(t)=
(B(t), B2(t),’’’, Bn(t)) is an n-dimensional standard Brownian motion process.

Analyzing the asymptotic behavior of C(x, t) for large is equivalent to analyzing
the asymptotic behavior of X(t) for large t. To be more specific, suppose that the
stochastic process

(1.4) Z(t)-= e[X(t/e2) e-2Uot]

converges in distribution, as e $ 0, to a Brownian motion with zero mean and a dispersion
matrix K- ((K0)). Here b=(b,..., bn) is a suitable constant vector interpreted as
the large scale average of b(x). In other words, suppose that a central limit theorem
(CLT) holds for X(t). Now the probability distribution of Z(t) has the density (at x)
e-p(e-2t; z, e-Ix+ e-2tUoa) if X(0) =z. Hence the CLT asserts that
e-"p(e-t;z, e-x+e-EtUoa)dx converges weakly, as e $0, to the Gaussian distri-
bution:

(1.5) d(t’)d=(2rt)-’/(DetK)-l/exp - ,=1

Here K is the (i,j) element of the matrix K-. Thus as e $0 we obtain

(1.6) e-"C( l?.-Ix + e-2tgo, e-2t) dx- Cod( t, x) dx

where Co is the total initial concentration.
From here on we will refer to ((D)) as the small scale dispersion matrix and

((Kj)) as the large scale dispersion matrix.
CLTs such as described above have been derived for periodic coefficients Dij, b

in Bensoussan, Lions, and Papanicolaou (1978) and Bhattacharya (1985). Under the
assumption that the elliptic operator on the right-hand side of (1.1) is self-adjoint,
Kozlov (1979), (1980), and Papanicolaou and Varadhan (1979) have proved such CLTs
for the case where the coefficients are stationary, ergodic random fields. An extension
to the nonself-adjoint case for almost periodic coefficients, when the large scale velocity
b is nonzero, is given in Bhattacharya and Ramasubramanian (1988). Papanicolaou
and Pironeau (1981) also deal with a nonself-adjoint case when the coefficients
constitute a general ergodic random field and b 0.

Such problems arise in analyzing the movement of contaminants in saturated
porous media such as aquifers as well as in laboratory columns. The dependence of
K on Uo has been studied experimentally in laboratory columns (see, e.g., Fried and
Combarnous (1971)). The spatial scale parameter a is fixed in such experiments. In
aquifers, on the other hand, the main interest from the point of view of long term
prediction lies in the analysis of K as a function of the scale parameter a for a fixed
velocity field, and therefore for a fixed Uo (Gupta and Bhattacharya, (1986)). Field
scale dispersions in aquifers have been analyzed for the ergodic random field case
(when b is nonzero) in, e.g., Gelhar and Axness (1983), Winter, Newman, and Neuman
(1984), and Dagan (1984). For certain classes of periodic coefficients, the dependence
of K on a and Uo has been analyzed in Gupta and Bhattacharya (1986) and Guven
and Molz (1986). A more detailed survey of the hydrologic literature is given in Sposito,
Jury, and Gupta (1986).

The dependence of K on Uo has been treated in the literature separately from its
dependence on a because of the physical contexts in which these arise. As we shall
see in 2, the roles of Uo and a in this respect are interchangeable. Indeed K depends
only on the product a Uo.
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In 3 we analyze the dependence of K on a Uo for the class of periodic coefficients
such that Dij’s are constants and b has zero divergence. It is shown that for one broad
class of periodic coefficients, the Kii’s grow quadratically as aUo-, and that the
Kii’s approach asymptotic constancy for another class.

Section 4 provides a refinement of the Gaussian approximation (1.6) in the form
of an asymptotic expansion in powers of e. In probability theory such an expansion
is called a Cramer-Edgeworth expansion. In the differential equations literature it is
referred to as a singular perturbation expansion. For prediction of concentration C (x, t)
in aquifers over time scales that are not very large, such expansions provide better
approximations than the Gaussian. The importance of predictions over such time scales
has been discussed, for example, by Guven and Molz (1986) and Dagan (1984).

2. Interchangeability of velocity and spatial scale parameters in K. Write,

(2.1) K( Uo, a)= K, K0( Uo, o)-- Kij,

indicating the dependence of the large scale dispersion matrix K on the velocity and
scale parameters Uo and a.

PROPOSITION 2.1. If the central limit theorem holds for the solution X(t) of (1.3),
then K depends on Uo and a only through their product a Uo. In particular,

(2.2) K( Uo, a)= K(a, Uo)= K(aUo, 1).

To prove this, express the solution of (1.3) as X(t; a, Uo) to indicate its dependence
on a and Uo. Define the stochastic process

(2.3) V(t; a, Uo) aX(t/a2; 1, Uo).

Then Y(t; a, Uo) satisfies the It6 equation

dt
dY(t; a, Uo)=aUob(X(t/a2; 1, Uo))--a2+ao(X(t/a2; 1, Uo)) dB(t/a)

(2.4)
Ub(V( t; a, Uo)/a) dt + or(Y( t; a, Uo)/a) dl(t),
a

where B(t) is defined by

(2.5) d(t) a dB(t/a), (0) B(0) 0.

Note that B(t) is, like B(t), a standard n-dimensional Brownian motion. It now follows
from (2.4) that Y(t; a, Uo) has the same distribution as X(t; a, Uo/a) (with the initial
value Y(0; a, Uo)= az). Hence

Var (t; a, Uo) Var X(t; a, Uo/a)
(2.6) lim lim K( Uo/a, a),

t- t->

where Var stands for the variance-covariance matrix. Now, from (2.3),

(2.7)

lim
Var Y(t; a, Uo)

lim a2 Var X(t/a2; 1, Uo)
t- -

Relations (2.6) and (2.7) yield,

(2.8)

Var X(t/a2; 1, Uo)
lim
t t/a2 K(Uo, 1).

K( Uo/a, a) K( Uo, 1).
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Write a Uo/a, fl a. Then (2.8) becomes

(2.9) K(a,/3) K(a/3, 1) for all a > 0, /3 > 0.

This proves the proposition.
It may be remarked that in a periodic model a is simply the period (Gupta and

Bhattacharya (1986)). In an ergodic random field model (see Gelhar and Axness (1983),
Winter et al. (1984)), a may be taken to be the characteristic correlation length. Fried
and Combarnous (1971) give an account of the fairly extensive laboratory experiments
that have been done to study the effect of increase in velocity on dispersion in porous
media. A broad mathematical justification of these experimentally observed relation-
ships appears in Bhattacharya and Gupta (1983). In these studies the spatial scale is
held fixed at the so-called Darey level, while velocity, is increased. On the other hand,
dependence of dispersion on large spatial scales has been analyzed in field situations
for various models of heterogeneous porous media. The above proposition shows that
the two relationships are mathematically equivalent. For this reason, in the next section
the spatial scale a is held fixed at a 1, while the velocity parameter Uo is allowed
to vary.

3. An expansion of the large scale dispersion in the periodic model. In (1.1), take

D0’s to be constants and bi’s continuously differentiable periodic functions satisfying
the divergence condition

(3.1) div b=0.

In view of proposition (2.1), we take the period of b to be one in each coordinate
without loss of generality. Let L denote the elliptic operator

(3.2) Lg(x) Dg(x) + Uob(x) Vg(x), x 6 "where

1 02
(3.3) D - _, Dj.

Oxi Ox
Let T [0, 1 ]". Define

(3.4) b b() dx, i= 1, 2,..., n,
T

and let gi be a periodic function satisfying

(3.5) Lgi bi hi.
Then it follows from Bhattacharya (1985) that the large scale dispersion coefficients
are given by

(3.6) Kij Dij- U2o j-r gi(x)(bj(x)-t)dx- U fTgj(x)(bi(x)-b) dx.

It is convenient to work with the following spaces of (equivalence classes of)
complex-valued functions on T:

H={h" fT- [h(x)[2 dx<’ f; h(x) dx=O’

and h satisfies periodic boundary conditions,

H1--{hH: fT. lVh(x)12 dx<},
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i,j=, xi Oxj
h(x) dx<oo

Here, ]. denotes both absolute value and Euclidean norm. For convenience, we take
the norm and inner product on H to be

Ilhll [ o o
h(x) /’7(x) dx, and

i,j= OXi OXj

(h,
0

dx

for h, w H. This is allowed, since ((D)) is a real, positive-definite, symmetric matrix
and

h(x) dx 0
T

for h H1.
For a given set f (i 1, 2, , n) in H let gi be the solutions in H2 of

(3.7) Lg, =f.
Standard results in the theory of elliptic partial differential operators imply that (3.7)
has a unique solution gi H2 for each f H1.

Throughout we shall write

(3.8) E, Ee( Uo) -U [ g,(x)f(x) dx.
dT

In this notation, Ki Dij + E + Ei with f b- hi.
Note that the operator D is one to one on H2 onto H. To obtain useful

eigenfunction expansions we note that for f H and g H, Lg-f if and only if
[I + UoH]g D-lf, where Hg(x) D-lb(x) Vg(x). We can consider H as an operator
from H to itself; as such, it is compact and skew-symmetric. Then H has eigenfunctions
{bk}k=l,2,... and corresponding eigenvalues {x/--1Ak}=i,2,... with the following
properties:

(i) Each hk is real and limk_,oo/k--0.
(ii) {bk}k=l.2,---is a complete orthonormal set on Hl f)N-, where N=

{h HI" Hh 0} is the null space of H in H and +/- denotes orthogonal complement.
(iii) Each h H1 can be represented as

(3.9) h hrq + E ak4)k,
k=l

where hN N and for k 1, 2, , ak (h, tk)l Note that

llhll=-- =llhll+ I1=, and
k=l

Hh ., x/Z- 1 hagdp.
k=l

Suppose that for g H2 andf H, the representation (3.9) becomes

g= gN + akdPk, and
k=l

D-if (D-If) N + E flkbk.
k=l
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Then Lg =f if and only if [I + UoH]g D-If i.e.,

gN + E (1 +’-Z--1 Uohk)ak&k (D-lf)N + E flkCk,
k=l k=l

(3.10) g L_lf (D_lf) + y ]3k
k--1 1 +x/’2- Uotk

Ck"

Suppose that the given set of functions f is real valued and contained in H. If
we have

D-If
k=l

for each i, then (3.10) gives

gi L-If ---(D-if)N +
k

ik

It follows that for general and j

Eo(Uo) =-U I gi(x)DD-lf(x) dx= U(gi, D-lfj),
T

E.(Uo) U f gi(x)D[I + UoH]gi(x) dx
T

ug{llg, ll,/ Uo(gi, Hgi)l}.

Since H is skewsymmetric on H and gi is real-valued, (gi, Hgi}l 0. Consequently,

(3.12) i,1= )Eli (UO) U) II(D-lf)ll+ k=,12
_
-A

It may not be apparent how to obtain (3.12) by taking j in (3.11). The two formulas
can be reconciled by noting the following:

(i) Since ((D0)) and b are real, for each eigenfunction-eigenvalue pair Ck,
x/Z] Ak there is a complex conjugate pair i k, V/--1 AI -x/’ Ak.

(ii) For such conjugate pairs,

3ik (fi, k)1 (fii, 1)1 3il
since f is real.

(iii) Then for such pairs,

Iikl 2 Iil[ I,12 Iill--I- ----+--
1 +,/-: 1 Vo, 1 +-1 Vo,, 1 + VoL, 1 + VoL

3.1. Applications and examples. Expressions (3.11) and (3.12) are our basic tools
for analyzing the behavior of the E0’s and K0’s. In the following, we show how these
expressions can be applied to the examples of Gupta and Bhattacharya (1986) as well
as to new examples, and we give some results that illustrate how they can be used to
obtain general statements.

(3.11)

U{((D-,f)N, (D-lf)N)I + ikjk }k=l 1 +X/’-Z1 UoAk
If i-j, a sharper result can be obtained. We have
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It is obvious from (3.11) and (3.12) that Eo(Uo) O(U) if <(D-if)
0 and Eo(Uo) o( Uo2) otherwise. In particular, E,(Uo) O(U) if (D-lf)s 0 and
E,(Uo) o( Uo2) otherwise. We note that N" {h H" Hh --0} is just the null space of
b. V in HI, i.e., the set of h H such that b(x). Vh(x)= 0 almost everywhere in T.
This is to say that N is the set of elements of H that are constant along the flow
curves determined by b. By a flow curve, we mean a characteristic of the partial
differential operator b. V, i.e., a solution of the autonomous system b(x).

LEMMA 3.1. Suppose that f H is constant along each flow curve. Then either

f O, in which case Eo( Uo) 0 for each j, or Eii( Uo) O(U).
Proof We have that f N and

(f,D-If)l--f f(x) dx.
T

It follows that iff 0, then (D-f)uO and E,(Uo)=O(U).
Example 3.2 (Gupta and Bhattacharya (1986)). Take n 3, and,

b(x) (1 + sin 2rx3, sin 2rx3,0), x (x, x2, x3).

Then it is simple to check that for 1, 2, f bi- bi satisfies the hypothesis of Lemma
3.1.and E, and K, are O(U). In fact, fl and f2 depend only on x3, and so D-If1 and
D-f depend only on x3. Then D-f and D-f2 are in N, and since

(D- fl, D-f2) f sin 2 "/TX D- sin 2 ’Trx dx > O,
T

it follows that E2, EI, and K12 are O(U).
As an operator on H, b-V has range

R {f H: f b" Vh for some h HI}

in H. This range R, as well as the null space N, can be helpful in determining the
behavior of the Eo’s and Ko’s.

LEMMA 3.3. Suppose that f R. Then

lim E,(Uo)
Uo

where hi is the unique element ofHlfq N+/- such that f b Vhi. Also for # j,

(3.13) Eo(Uo) O( Uo)- Uo(h,, D-f), and

(3.14)

for large Uo.
Remark. In (3.13) and (3.14), means that after division by Uo, both sides

approach the same limit as Uo approaches infinity. In particular, if the inner products
in (3.13) and (3.14) are zero, then Eo(Uo) and Eji(Uo) are o(Uo).

Proof It is clear that hi exists, and we write

hi Yikbk.

Then

D-If Hhi E x/-Z AkYikCkk,
k=l
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and (3.12) gives

Thus

For j # i, we write

and (3.11) gives

(3.15)

Then for large Uo,

Similarly,

(3.16)

for large Uo.

E,,( Uo) U E
A 2[ y,k[2

2 2"
k=l 1+ UoA k

lim E,,(Uo) Y ly,kl2=llh, ll.
Uo k=l

D-lf (D-lf) + E
k=l

E) Uo Uo k= 1 + x/-S-f UoAk

Eij( Uo) O(Uo) Uo ., "Yikfljk Uo<hi, D-f>,.
k=l

Ej, -Uo k__, "1 + x/T] UoX 0(Uo)

Uo E [3jkY,k Uo(D-lfj,

It is interesting to note the behavior of Kij when f-= bi- b belongs to R. From
(3.15), (3.16), and an extension of the reasoning after (3.12), we obtain

(3.17) E, (Uo) + E,(Uo) 2 Uo X -rT, ’,.
k=i 1+ Uoak

Since the sum on the right-hand side of (3.17) approaches zero as Uo grows large, Ko
is o(Uo) for large Uo when f R. More can be said if f as well as f is in R. Suppose
f R and

h E
k=l

is the unique element of H f’l N" such that b. Vhj. Taking/3j x/L-i akyj in (3.17)
gives

2 2Uoa k
E,j( Uo) + Ej,( Uo) 2 Y’. y,g/j,

k=l 1 + UA2k
and so

lim Ko(Uo) Dj lim {Eo(Uo) + Eji (Uo)}
Uo-> Uo-+

Dij-2(h,, hj)l.
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Unfortunately, we cannot characterize the range R without making restrictive
assumptions about b. We can imagine many applications in which one of the bi’s never
vanishes on T, and so to be specific we assume for the remainder of this section that
bl> 0 on T. This allows us to parameterize the flow curves in terms of xl. Indeed, if
we write x ,t as x- (xl, ) for -- (x2, , xn) ,t -1, then the flow curves are just
the curves (t, (t)), where (t) solves the nonautonomous system

,=(t,)=(b2(t,) b,(t,))bl(t, :)’ bl(t, )
In fact, for each value of (0) -1, this system determines a unique curve (t, (t))
in the strip S [0, 1] t-, which is defined for 0-< < 1", furthermore, each x T
can be uniquely written as x-(xl, (Xl), a point on such a curve. (The periodicity
assumption on b implies that b is defined and bounded everywhere.) We identify
functions on T satisfying periodic boundary conditions with periodic functions on S
in the obvious way.

LEMMA 3.4. Suppose f C is a function on T that satisfies
f(t’(t))

dt=O,(3.18)
bl(t, fc(t))

for every flow curve t, f(t)), 0 <-_ <-_ 1. Then f R.
Proof. For each x T, we write uniquely x- (xl,(xl)) for a flow curve (t,f(t))

and define
1 f(t,(t))

h(x)

Since f and b are C 1, so is h. Furthermore, for x e T,
d

h(Xl (Xl))=f(xb(x)" Vh(x)= bl(X dx--
Clearly, h(0, )=0 for all and h(x, ) satisfies periodic boundary conditions in
for 0<x <1. Also, (3.18) implies that h(1,) =0 for all . Then he H andf R.

COROLLARY 3.5. Suppose that f C and satisfies

o

fi(t’fc(t))
dt=O

for every flow curve t, f( t)), 0 <- <- 1. Then the conclusions of Lemma 3.3 hold.
Example 3.6 (Gupta and Bhattacharya (1986)). Take n 3, and

b(x) (bl, 1 +sin 27rxl, sin 2"trXl).
Then f b- b, 1, 2, 3, satisfy the hypothesis of Lemma 3.4, and each E, and K,
is O(1). It follows from the remarks after the proof of Lemma 3.3 that each K0 is O(1).

In Example 3.2, each E0. and K0. is O(U) for i,j 1, 2; in Example 3.6, each E0
and K0 is O(1). We give an additional example in which E2 and K are O(U2o) and
all other E0’s and K0’s are O(1).

Example 3.7. Let n 3, and b3(x) 2 + (cos 27rx1)(COS 27"t’x2) bl(x) 2 +sin 27rXl,
bl(x) 0. Then Ell 0 and Kll Dll. Also, clearly, EI El3 E21 E31 0 and g13
O13, 112 012. Since b-Vb2=0, E and K2 are O(Uo) by Lemma 3.1. Now the
coefficients of L do not involve x3. Hence, the solution of Lg3(x) ba(x)- b3 is of the
form ga(IK) g(Xl, 22) where

1 02g O___g (cos 2rx2)(cos 2rx).D,.- + Uo(2+sin27rxl)
Ox

(3.19)
2 =l Ox Ox.
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Since b2 > 0, it follows from Lemma 3.4 (with n 2) applied to the function f on the
right-hand side of (3.19) that E33 is O(1) and K33 D33 + O(1). A direct computation
shows that E23--- E32--0 and K23-- D23.

The above examples subtly reflect the influence of the geometry of the flow curves
on the asymptotic behavior of the E’s and K0’s. The tools developed here can be
used to bring out this geometrical influence. In the remainder of this section, we
illustrate how this can be done by making assumptions about the geometry of the flow
curves and obtaining statements about the asymptotic behavior of the E’s and K’s.
While these statements apply only to somewhat specialized situations, they and their
proofs suggest promising directions for future work. They also show the type of
asymptotic behavior that is possible in situations that come naturally to mind. Our
first result is another corollary of Lemma 3.4.

COROLLARY 3.8. Suppose that for some i, 2 <-i<-_ n, every flow curve is periodic in
the ith component, i.e., xi(O) xi(1) for every flow curve (t, (t)) (t, x2(t), ", x(t)),
0 <-_ <- 1. Then bi 0 and the conclusions of Lemma 3.3 hold.

Proof We have

O--xi(1)--xi(O) Xti(t) dt= bi(t,(t))/bl(t,(t)) dt

for every flow curve (t, (t)), 0<_-t-< 1. It follows from Lemma 3.4 that b R, i.e.,
bi b Vh for some h H1. Then

b b(). Vh() d O,
T

which implies f b- b b R.
The examples given previously have the property that each E and K is either

O(Ug) or 0(1). An important unresolved question is whether any other behavior is
possible in general. We show now that under an additional restriction on the flow
curves, i.e., on b, each Eii and Kii must be either O( Uo2) or O(1).

We assume not only that b > 0 in T but also that the difference between any two
flow curves is constant as Xl varies. This is equivalent to assuming that for 2, , n,
the ratio bi(x)/bl(X depends only on x. Under this assumption, the flow curves can
be conveniently described as follows: Let (t,(t)), 0_-< t_-< 1, be the flow curve passing
through the origin, i.e., such that (0)= 0; then every other flow curve can be written
as (t, 0+ (t)), 0 -< =< 1, for an appropriate o.

PROPOSrrION 3.9. Under the present assumptions, bl is constant along each flow
curve and either b =-b-l, in which case E( Uo) =0, or E(Uo) O(U).

Proof We have that

’(x,) (b2(x)/bl(X), b,(x)/bl(X)),

and so b(x)= b(x)(1, ’(x)). Then the assumption that V. b(x)-= 0 implies

(1, ’(x)) Vbl(X) 0.

But this is to say that the directional derivative of b along each flow curve is zero,
and the proposition follows from Lemma 3.1.

THEOREM 3.10. Under the present assumptions, either Eii( Uo) O(U) or fi R
and the conclusions of Lemma 3.3 hold.

Proof If (D-f)#O, then Eii(Uo)=O(U). Suppose (D-f)rv=O, i.e., that
(h, D-f) 0 for every h N. We show that f R.
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Set" {=(x,...,x,)R"---< <1/2,x 2 < < n}, and denote by the restric-
tion of the Dirac delta distribution on "- to T. Let {q}=,z,... be a sequence of C
functions on " such that each q has support in the interior of " and

lim
kc

in the distributional sense. Extend and each q to be periodic with period one in
each variable over all

Let (t, o+(t)), 0=< t_<l, be an arbitrary flow curve. For x= (x,) S, define

q, (x) ’k (X-- Xo-- X(X,)), k= 1,2,’’ ".

Each q’k is constant along every flow curve and so belongs to N. Also, for x (x, ),
(3.20) lim q’k(X)= 6(X--o--X(X,))

in the sense of distributions on "-. Then

0 lim (q’k, D

f
(3.21) lim- | $k(X)f(x) dx

/c- T

f(t,o+(t)) dt.
o

The last equality follows from (3.20) by periodicity even when the flow curve is not
contained in T. Since b is constant along the flow curve by Proposition 3.9, (3.21)
implies

+(t))
dt=O.

b,(t,o+(t))
Since the flow curve is arbitrary, it follows from Corollary 3.5 that f R.

We offer a final example on which Corollary 3.8, Proposition 3.9, and Theorem
3.10 are applicable.

Example 3.11. Let : be any C2 function on 9t that is periodic with period one
and such that so(0)= :(1)=0. We take n 2 and construct b:.9i2 9]2 such that the
flow curves in S are the curves

(3.22) t, x2( t)) t, x2(O) + ( t)), 0<=t<-l.

Let r/ be any C function on that is periodic with period one and that is always
positive. For x (x, x2) 2, set

b,(x) r/(s(x,)-x2) and b2(x) ’(x)q((Xl)-X_).

Then V b(x) 0 for x 2. Also b2(x)/b(x) s’(x), and so the flow curves are given
by (3.22). Note that every flow curve is periodic in the second component, i.e.,
x2(0) x(1) for every flow curve. As a concrete example, take

b(x)=2 +sin (27r(sin (2rx,)-x2)), b2(x)=27r cos (27rx,)b(x).

According to Theorem 3.10, each E, and K, is either O(Uo2) or O(1). In fact,
Proposition 3.9 implies that E and K are O(U), and Corollary 3.8 implies that
E22 and K2 are O(1). It follows from the remarks after the proof of Lemma 3.3 that
K is o(Uo). With some effort, we can show that the inner products in (3.13) and
(3.14) are zero, and so E and E are also o(Uo).
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Remark. Suppose the flow Y(t,y) generated by b. V (i.e., (d/dt)(t,y)=b(Y),
Y(0, y)= y) is ergodic on T, with the normalized Lebesgue measure as the invariant
measure. This is true if and only if the null space N is {0}. Since bi(Y(t," ))-bi is
then ergodic, we may expect a smaller value of E, and, therefore, of the dispersion
K, D, + 2E,. Lemma 3.3 shows that this expectation is justified. The precise mathe-
matical connection between the topological dynamics of b and the asymptotic behavior
of the effective dispersion K(Uo), as Uo-, appears complicated.

4. An asymptotic expansion of concentration. Assume that Dj(. and b(. are
continuously differentiable and periodic (with period one in each coordinate,
((Dj(.))) positive definite. Write f(t)=(Xl(t)(mod 1),... ,Xn(t)(mod 1)). Then
(t) is a Markov process on the torus [0, 1] n. Let /(t; ,9) denote the transition
probability density of ’(t) and 7r(3) the corresponding invariant probability density"
r()/(t; , ) d 7r(9). If the probability density of X(0) is 7r (the entire probability

mass being on [0, 1]"), then for any t>0 the sequences Yj=-X(jt)-X((j-1)t) and
(Y.i, f((jt)) (j 1, 2,...) are stationary and th-mixing with an exponentially decaying
th-mixing rate, the latter being also Markovian (see Bhattacharya (1985)). Also, Yj has
a density and finite moments of all orders. Hence Theorem (2.8) of G6tze and Hipp
(1983) applies (see Example (1.13) in that article), and we have an asymptotic expansion
for the distribution of IX(St)-X(0)- StUo]/S1/2-- [E=I Yj- EYj)]/S1/2. More
precisely we have, for every positive integer s,

Prob ((X(Nt) X(0) StUo)/S1/2 B)
(4.1)

=/b(t, x)dx+ N-r I d/r(t x)dx+ o(N-s/2) (N-),
3B r=l 3B

uniformly over every class of Borel sets B satisfying

(4.2) sup [ b(t, x) dx= O(8) (850),
BJ ,, OB)

for some a > 0, (OB) being the -neighborhood of the boundary oB of B. Here O(t, )
is the Gaussian density with mean zero and dispersion matrix tK, K being the large
scale dispersion. The functions (t, ) are polynomial multiples of &(t,). For the
classical case of independent summands the details of the construction of such poly-
nomials may be found in Bhattacharya and Ranga Rao (1976 7). For the present
case the formalism is entirely analogous once the cumulants of the normalized sum
EN (Yj-EYj)/N1/2 are expanded in powers of N-1/2 (see Gftze and Hipp (1983)).
Note that (4.2) holds, e.g., for the class of all Borel measurable convex sets (see
Bhattacharya and Ranga Rao (1976, p. 24)).

In the case the initial concentration is proportional to 7r, (4.1) may be expressed
as (see (1.6)),

e-"C(e-x+e-tUo,e-t) dx

(4.3)
B

=Cf [dP(t’x)+erd/r(t’x)]r=l

where Co is the total solute mass. On the other hand, if the initial concentration is
arbitrary, say an integrable function or a point mass, the distribution of X(0) must be
taken to be this concentration normalized. In this case Y./ is not stationary, but only
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asymptotically so, and the functions Or(t, x) must involve e (or, N-1/2) reflecting the
nonstationarity of the moments, etc. Thus we have

e-"C(e-lx+e-ZtUo, e-zt) dx
B

(4.4)

uniformly over B e satisfying (4.2). It is very likely that (4.4) holds uniformly over
the class of all Borel sets, i.e., the expansion holds in L(9n, dx); however, a proof
of this does not seem to be available.

The expansion (4.4) provides a better approximation to concentration than the
Gaussian approximation 4. This improvement is particularly significant for relatively
small times, i.e., in the so-called preasymptotic zone. By computing the first three
moments of observed concentration, we may approximately calculate the expansion
(4.4) for s 1. The fourth- and higher-order cumulants only contribute to terms O(e2).

Acknowledgment. The authors thank the referees for a comment that led to the
remark at the end of 3.
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