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Abstract. Recent results on residual smoothing are reviewed, and it is observed that certain
of these are equivalent to results obtained by different means that relate “peaks” and “plateaus” in
residual norm sequences produced by certain pairs of Krylov subspace methods.
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1. Introduction. Let {xk} be a sequence of approximate solutions of a linear
system Ax = b, A ∈ IRn×n, and let {rk ≡ b − Axk} be the associated sequence of
residuals. We consider the following general residual smoothing technique:

y0 = x0, s0 = r0,

yk = yk−1 + ηk(xk − yk−1)

sk = sk−1 + ηk(rk − sk−1)

}

k = 1, 2, · · · .
(1.1)

The name derives from the fact that if the original residual sequence {rk} is
irregularly behaved, then the parameters ηk can be chosen to produce {yk} with a
more “smoothly” behaved residual sequence {sk = b − Ayk}. More general forms of
residual smoothing are considered by Brezinski and Redivo-Zaglia [1], but (1.1) will
suffice here.

A Krylov subspace method for solving Ax = b begins with some x0 and, at the kth
step, determines an iterate xk = x0 + zk through a correction zk in the kth Krylov

subspace

Kk ≡ span {r0, Ar0, . . . , Ak−1r0}.

The purpose of this brief exposition is to point out the equivalence of certain results for
residual smoothing techniques (1.1) to observations that relate “peaks” and “plateaus”
in residual norm sequences produced by certain pairs of Krylov subspace methods.
By a “peak”, we mean a marked increase in the residual norms followed by a decrease;
by a “plateau”, we mean a period of very slow decrease or stagnation. Some results
quoted here can be phrased more generally; we have tried to stick to the most basic and
important cases for the sake of brevity and clarity. Also, our interest is in theoretical
properties, and we do not consider issues having to do with finite-precision arithmetic.
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2. Minimal residual smoothing and pairs of orthogonal and minimal
residual methods. A natural choice of ηk in (1.1) is that for which ‖sk‖2 is minimal.
This ηk is easily characterized by

ηk ≡ arg min
η

‖sk−1 + η(rk − sk−1)‖2 = −
sTk−1(rk − sk−1)

‖rk − sk−1‖22
.(2.1)

The resulting smoothing technique1, which we refer to as minimal residual smoothing,
was introduced by Schönauer [14] and studied extensively by Weiss [17]. Note that
it clearly gives ‖sk‖2 ≤ ‖sk−1‖2 and ‖sk‖2 ≤ ‖rk‖2 for each k. We summarize as
follows:

Algorithm MRS: Minimal residual smoothing [14], [17]

Initialize: Set s0 = r0 and y0 = x0.

Iterate: For k = 1, 2, · · ·, do:
Compute xk and rk.
Compute ηk = −sTk−1(rk − sk−1)/‖rk − sk−1‖22.
Set sk = sk−1 + ηk(rk − sk−1) and yk = yk−1 + ηk(xk − yk−1).

When the residuals rk are mutually orthogonal, i.e., when rTi rj = 0 for i 6= j,
Weiss [17] has shown a number of important results for {sk} generated by Algorithm
MRS (see also Weiss [18]). Slightly specialized or adapted versions of those most
useful here are the following:

sk =
1

∑k

j=0
1

‖rj‖2

2

k
∑

i=0

1

‖ri‖22
ri,(2.2)

1

‖sk‖22
=

k
∑

j=0

1

‖rj‖22
,(2.3)

‖sk‖2 = min
η1,···,ηk

‖s0 +
k

∑

i=1

ηi(ri − si−1)‖2.(2.4)

Using the orthogonality of the residuals rk, one can establish (2.2)-(2.4) by induction
on k. Weiss [18] has termed (2.3) “Kirchoff’s rule” because of its similarity to the
rule of that name for determining resistance in parallel electrical circuits. We note
for later use that (2.3) is equivalent to

‖rk‖2 =
‖sk‖2

√

1− (‖sk‖2/‖sk−1‖2)2
.(2.5)

These results have particularly important application to pairs of orthogonal resid-
ual and minimal residual Krylov subspace methods. Recall that, at the kth step, an
orthogonal residual method produces a residual rOR

k that is orthogonal toKk (provided

1It has been noted in [20] that the straightforward implementation of (1.1) using ηk defined by
(2.1) may suffer numerical inaccuracy; however, this is not important here. See [20] for an alternative
formulation that may have better numerical performance.
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it is possible to do so) while a minimal residual method produces a residual rMR
k that

has minimal norm over all corrections in Kk. It would be inappropriate to review all
of the many implementations of these methods for special and general A, but we note
several particularly well-known orthogonal/minimal residual method pairs: the con-
jugate gradient (Hestenes and Stiefel [9]) and conjugate residual (Stiefel [15]) methods
for symmetric positive-definite A; SYMMLQ and MINRES (Paige and Saunders [11])
for symmetric indefinite A; ORTHORES and ORTHODIR (Young and Jea [19]) for
general A; and, also for general A, the Arnoldi method (or full orthogonalization
method) (Saad [12]) and the generalized minimal residual (GMRES) method (Saad
and Schultz [13]).

Weiss [17] has shown that applying minimal residual smoothing to an orthogonal

residual method results in a minimal residual method. Indeed, the residuals rOR
k are

clearly mutually orthogonal; furthermore, the vectors rOR
j − rMR

j−1, j = 1, . . . , k, can
be seen to form a basis of A(Kk) for each k. Then the result follows inductively from
(2.4) above. Specializing (2.2) and (2.3) to this case yields the following theorem.

Theorem 2.1 ([17]). The residuals produced by orthogonal and minimal residual

methods satisfy

rMR
k =

1
∑k

j=0
1

‖rOR

j
‖2

2

k
∑

i=0

1

‖rOR
i ‖22

rOR
i ,(2.6)

1

‖rMR
k ‖22

=

k
∑

j=0

1

‖rOR
j ‖22

.(2.7)

Note that (2.6) expresses rMR
k as a convex combination of rOR

0 , . . . , rOR
k , in

which each rOR
i is weighted in proportion to the reciprocal of the square of its norm.

Furthermore, rearranging (2.7) in the manner of (2.5) gives the following corollary.
Corollary 2.2. The norms of the residuals produced by orthogonal and minimal

residual methods satisfy

‖rOR
k ‖2 =

‖rMR
k ‖2

√

1−
(

‖rMR
k ‖2/‖rMR

k−1‖2
)2

.(2.8)

This corollary is an extension to general orthogonal/minimal residual methods of
a result of Brown [2, Th. 5.1] relating the performance of the Arnoldi and GMRES
methods. The result of [2, Th. 5.1] is given in a somewhat different form but has
been rephrased in essentially the form (2.8) by Cullum and Greenbaum [4, Th. 3].
This result provides the basis of observations by Brown [2] and Cullum and Green-
baum [4], [5] that, taken together, in effect correlate peaks in {‖rOR

k ‖2} with plateaus
in {‖rMR

k ‖2}.
Equations (2.7) and (2.8) are equivalent but give somewhat different perspectives

on how {‖rMR
k ‖2} and {‖rOR

k ‖2} are related. Equation (2.7) makes plain the “global”
dependence of ‖rMR

k ‖2 on ‖rOR
0 ‖2, . . . , ‖rOR

k ‖2; note that {‖rMR
k ‖2} is small if and only

if at least one of ‖rOR
0 ‖2, . . . , ‖rOR

k ‖2 is small. Equation (2.8) brings out the “local”
dependence of ‖rOR

k ‖2 on ‖rMR
k ‖2 and ‖rMR

k−1‖2. We always have ‖rOR
k ‖2 ≥ ‖rMR

k ‖2, of
course, and (2.8) further shows that equality holds if and only if ‖rOR

k ‖2 = ‖rMR
k ‖2 =

0, i.e., both methods have reached the solution. Before the solution is reached, we
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have from (2.8) that the factor by which ‖rOR
k ‖2 exceeds ‖rMR

k ‖2 is determined by
‖rMR

k ‖2/‖rMR
k−1‖2, which measures the progress made by the minimal residual method

at the current step. In particular, (2.8) shows clearly that, as observed by Brown [2]
and Cullum and Greenbaum [4] for the Arnoldi and GMRES methods, if one method
performs either very well or very poorly, then so does the other.

3. Quasi-minimal residual smoothing and certain pairs of Lanczos-
based methods. Another kind of smoothing of the form (1.1), called quasi-minimal

residual smoothing , has been considered by Zhou and Walker [20]. The name derives
from the fact that when this smoothing is applied to the residuals and iterates pro-
duced by the biconjugate gradient (BCG) method (Lanczos [10], Fletcher [6]), then
the resulting smoothed residuals and iterates are just those of the quasi-minimal resid-
ual (QMR) method2 of Freund and Nachtigal [8]; see [20, §3]. We will discuss this
relationship between BCG and QMR in more depth after formulating quasi-minimal
residual smoothing and reviewing some of its general properties.

The general formulation is as follows3:

Algorithm QMRS: Quasi-minimal residual smoothing [20]

Initialize: Set s0 = r0, y0 = x0, and τ0 = ‖r0‖2.

Iterate: For k = 1, 2, · · ·, do:
Compute xk and rk.

Define τk by 1/τ2k = 1/τ2k−1 + 1/‖rk‖22.

Set sk = sk−1+
τ2k

‖rk‖22
(rk−sk−1) and yk = yk−1+

τ2k
‖rk‖22

(xk−yk−1).

The following results for {sk} and {τk} produced by Algorithm QMRS are easily
shown by induction ([20, §3]):

sk =
1

∑k

j=0
1

‖rj‖2

2

k
∑

i=0

1

‖ri‖22
ri,(3.1)

1

τ2k
=

k
∑

j=0

1

‖rj‖22
.(3.2)

Note that (3.1) is the same as (2.2), although now the residuals rk are not mutually
orthogonal, and that (3.2) is an analogue of (2.3), in which τk plays the role of a
quasi-residual norm. Also, (3.2) is equivalent to

‖rk‖2 =
τk

√

1− (τk/τk−1)
2
,(3.3)

which is an analogue of (2.5).

2Here, we mean the basic QMR method without look-ahead.
3It is noted in [20] that this formulation may have numerical weaknesses similar to those of

Algorithm MRS. See [20] for an alternative formulation that avoids these weaknesses.
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From (3.1) and (3.2), one obtains ([20, §3])

‖sk‖2 ≤
√
k + 1τk =

√

√

√

√

1
1

k+1

∑k

j=0
1

‖rj‖2

2

.(3.4)

Thus ‖sk‖2 is bounded by the square root of the harmonic mean of ‖r0‖22, . . . , ‖rk‖22.
To specialize these results to BCG and QMR, let {rBCG

k } and {rQMR
k } denote the

residual sequences generated by those methods and suppose that Algorithm QMRS is
applied with {rk} = {rBCG

k }. By the results of Zhou and Walker [20, §3] cited earlier,

we have {sk} = {rQMR
k }. It is further shown in [20, §3] that

τk =

√

√

√

√

1
∑k

j=0
1

‖rBCG

j
‖2

2

= min
y∈IRk

‖ ‖r0‖2e1 −Hky‖2,(3.5)

in which e1 = (1, 0, . . . , 0)T ∈ IRk+1 and Hk ∈ IR(k+1)×k is the tridiagonal matrix
satisfying AVk = Vk+1Hk, where, for each k, Vk ∈ IRn×k is the matrix the columns of
which are the first k normalized Lanczos vectors. Then (3.4) becomes

‖rQMR
k ‖2 ≤

√
k + 1τk =

√

√

√

√

1
1

k+1

∑k

j=0
1

‖rBCG

j
‖2

2

(3.6)

for τk given by (3.5). The bound ‖rQMR
k ‖2 ≤

√
k + 1τk has been given by Freund and

Nachtigal [8, Prop. 4.1] and is used as a preliminary termination criterion in QMR.
From (3.1), (3.2), and (3.5), we have the following analogue of Theorem 2.1.

Theorem 3.1 ([20]). The residuals produced by BCG and QMR satisfy

rQMR
k =

1
∑k

j=0
1

‖rBCG

j
‖2

2

k
∑

i=0

1

‖rBCG
i ‖22

rBCG
i ,(3.7)

1

τ2k
=

k
∑

j=0

1

‖rBCG
j ‖22

,(3.8)

where τk satisfies (3.5).

In analogy with (2.6), (3.7) shows that rQMR
k is a convex combination of rBCG

0 ,
. . . , rBCG

k , in which each rBCG
i is weighted in proportion to the reciprocal of the square

of its norm. This gives considerable insight into why the QMR residual norms tend
to decrease fairly smoothly, if not monotonically. Indeed, if ‖rBCG

k ‖2 is small for some

k, then rBCG
k is given large weight in (3.7) and ‖rQMR

k ‖2 is small. If subsequent BCG
residual norms increase, then the effect of this increase is mollified by relatively small
weights in (3.7) and any increase in ‖rQMR

k ‖2 is correspondingly small.
Rearranging (3.8) in the manner of (3.3) gives the following corollary:
Corollary 3.2. The norms of the BCG residuals satisfy

‖rBCG
k ‖2 =

τk
√

1− (τk/τk−1)
2
,(3.9)

where τk satisfies (3.5).
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This result has been given by Cullum and Greenbaum [4, Th. 6] using closely
related results of Freund and Nachtigal [8]. It is used in [4] to correlate peaks in
{‖rBCG

k ‖2} with plateaus in the quasi-residual norm sequence {τk}.
Although the quasi-residual norms are not the true QMR residual norms (we have

only the bound (3.6) in general), it has been experimentally observed by Cullum and
Greenbaum [4] that the quasi-residual norms tend to be good approximations of the
true QMR residual norms. Thus (3.8) and (3.9) indicate approximate relationships

1

‖rQMR
k ‖22

≈
k

∑

j=0

1

‖rBCG
j ‖22

,(3.10)

‖rBCG
k ‖2 ≈ ‖rQMR

k ‖2
√

1−
(

‖rQMR
k ‖2/‖rQMR

k−1 ‖2
)2

(3.11)

that suggest correlations of peaks in {‖rBCG
k ‖2} with plateaus in {‖rQMR

k ‖2}. Such
correlations are clearly seen in experiments by Cullum and Greenbaum [4] and Zhou
and Walker [20].

Equations (3.8)-(3.9) and approximations (3.10)-(3.11) give perspectives on the
relationship of {‖rBCG

k ‖2} to {τk} and {‖rBCG
k ‖2} similar to those given by (2.7)-(2.8)

on the relationship of {‖rOR
k ‖2} to {‖rMR

k ‖2}; see the last paragraph of §2.
Algorithm QMRS can be used to derive a QMR-type method from any given

method. Subsequently, (3.1)-(3.3) and the bound (3.4) can be used to draw relation-
ships between the residuals of the given method and the residuals and quasi-residual
norms of the resulting QMR-type method. In particular, these relationships can be
used to correlate peaks in the residual norms of the given method with plateaus in
the residual and quasi-residual norms of the QMR-type method as in the case of BCG
and QMR above.

We mention two examples from Zhou and Walker [20, §3] to which these obser-
vations are relevant. In these examples, application of Algorithm QMRS to certain
methods results in QMR-type methods that have been introduced elsewhere, and the
above observations apply. First, the TFQMR method of Freund [7] can be obtained
by applying Algorithm QMRS to the residuals, iterates, and certain intermediate
quantitites generated by CGS. Second, the QMRCGSTAB method of Chan et al. [3]
can be similarly obtained by applying Algorithm QMRS to the residuals, iterates, and
certain other quantitites generated by the Bi-CGSTAB method of Van der Vorst [16].

4. Minimal residual smoothing for non-orthogonal residuals. We con-
clude by briefly revisiting minimal residual smoothing. Weiss [18, Th. 2] has observed
that for arbitrary (not necessarily mutually orthogonal) {rk}, the bound (3.4), with
the quasi-residual norm τk given by (3.2), holds for {sk} generated by Algorithm MRS
as well as by Algorithm QMRS. (This springs directly from the fact that sk generated
by Algorithm MRS satisfies ‖sk‖2 ≤ mini=0,...,k ‖ri‖2; see [18, Th. 2].) Furthermore,
since the quasi-residual norms satisfy (3.3), we have the same correlation of peaks in
{‖rk‖2} with plateaus in {τk} as in the case of Algorithm QMRS, which suggests a
correlation of peaks in {‖rk‖2} with plateaus in {‖sk‖2} as in that case. In fact, it is
seen in a number of experiments reported by Zhou and Walker [20] that Algorithms
MRS and QMRS give fairly similar results when applied to the residuals and iterates
produced by BCG and CGS. In particular, peaks in {‖rk‖2} are strongly correlated
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with plateaus in {‖sk‖2} when either Algorithm MRS or Algorithm QMRS is applied
to BCG or CGS.
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