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1. INTRODUCTION 

Recently, various authors have studied classes of nonelliptic partial 
differential operators arising in mathematical physics, for example [2, 3, 51. 
One can show, among other results, that a coerciveness inequality holds for 
operators of the form 

A = c 
loI@ 

u.(x,g 

(where x E W, each u,(x) is a k x k matrix, and the notation is standard 
multi-index notation) provided the following conditions are satisfied: If the 
symbol of A is given by 

a@, 5) = 1 a,(x) P, 
l*l<m 

then 

(i) a(x, 5) is of constant rank, 

(ii) the null-space of a(x, LJ) is independent of X. 

Operators satisfying (i) and (ii) will be called partially elliptic operators. 
They are assumed to act on functions in the dense subset H,(lW; Ck) of 
L,(W”; Cl;), denoted henceforth by H, and L, . The coerciveness of such 
operators holds on the set N(u)‘- n H, , where N(a)‘- is the orthogonal 
complement in L, of the set 

iv(u) = {u: u(x, 6) a(t) = 0). 
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In scattering theory, it is important to know something about the total 
null-space N(A) of such an operator A appearing in an evolution equation 

ut = Au. 

Indeed, if A has no point spectrum other than zero, then it is to be expected 
that N(A) is precisely the set on which scattering does not take place. Clearly 
N(A) 2 N(a). To what extent can N(A) exceed N(a) ? In the following, we 
show that if A belongs to a certain class of first-order partially elliptic opera- 
tors, then N(A) = FA @ N(a), where the dimension of FA is finite and varies 
upper-semicontinuously with rZ in a certain sense. The development of 
these results closely parallels that of [6], using the coerciveness inequalities 
of [3]. Clearly, these results can be broadly extended in the spirit of [7] and 
[4]. However, in our opinion, energy would be better directed toward 
relaxing the condition (ii). 

2. THE RESULTS 

Let -4, = xr ai(a/&$) be a first-order partial differentiai operator with 
symbol a,(t) = z: ajtj . F or each nonzero 4 E lP, let p(e) be the matrix of 
the projection onto the null-space of a,(.$, and let U(t) be a unitary matrix 
mapping the null-space of as(t) onto the orthogonal complement of the range 
of a,(.$. (We may assume that U(t), as well as p(e), is homogeneous of degree 
zero in 5.) Then, for each 5 # 0, 

&J(5) = 40 + I 6 I VE)P(5) 

is a nonsingular matrix, and the pseudo-differential operator B, with symbol 
b,(t) is an elliptic operator on L, with domain Hi . Define M(B, , R) = 
(24 E H,: B&x) = 0 for j x 1 3 R]. W e establish the following fundamental 
property of this set. 

LEMMA 1. Subsets of M(B, , R) which me bounded in HI are precompuct 
in L, . 

Proof. The proof is, in essence, the Fourier-transform proof of the 
Rellich Compactness Theorem (see [I]). 

Suppose (u,,} 2 M(B, , R) is a bounded sequence in HI . Set fn = BOu,, . 
Since {fn} is an Ls-bounded sequence of functions with support in {X E Iw”: 
1 x 1 < R}, the Fourier transforms r ,̂([) are uniformly bounded with uni- 
formly bounded derivatives in DB n. It follows from the Arzela-Ascoli Theorem 
that there exists a subsequence {fn,} which converges uniformly on every 
compact subset of Iw”. 
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Now for each p > 0, one has 

where C = sup~e\=~ \ b,(&r 12. Since the sequence (fn-) is bounded in L, , 
the first term on the right may be made small by tak&g p large. If 71 3 3, 
then j,el(r, (l/j E 1”) d[ < co, and the uniform convergence of the functions 
f, j implies that the second term on the right approaches fero as j, K --+ 00. If 
n = 2, thenj,jJO) = 0 f or eachj, since l;,j([) = bo(&lfnj(f) is in L, . Since 
the functions fn, have uniformly bounded derivatives, the second term of the 
right must approach zero as j, k -+ 00 when n = 2. It follows that {un,} is 
Cauchy in L, for all n 3 2, and the proof is complete. 

We now define PE(A, , R) to be the set of partial differential operators of 
the form 

which are such that 

(i) uj(x) = aj and b(x) = 0 for 1 x 1 > R, 

(ii) for each x and 5 in R”, the null-space of a(x, 6) = Cj”=, aj(x) ei + 
b(x) is the same as the null-space of at,([). 

If A is an operator in PE(A, , R) then the pseudodifferential operator B, with 

symbol 4x, f) = 4x, 5) + I E I WY p(E) is elliptic. Then a standard coer- 
civeness inequality 

II u Ill < CU u II + II Bu III (1) 

holds for B (see, for example, [3]). Since N(B) C M(B, , R), it follows from 
this inequality and from Lemma 1 that {u EN(B): 11 uII = l> is compact. 
Hence N(B) is finite-dimensional. 

THEOREM 1. If A is in PE(A, , R), then 

NW = NW OFA 

where FA is finite-dimensional and N(u,) = {u ELM: q,(E) ii(t) = 01. 
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Proof. Since JV(a,,) C iV(--l), one has 

IV(a) = (X(A) n N(a,)‘) 1% (N(a) n N(a,)) 

= F.4 6 N(a,) 

whereF,, = A\7(.4) n N(n,)l. SinceF, C N(B), F, must be finite-dimensional. 
It will now be shown that the dimension of F,q depends upper-semi- 

continuously on an operator -4 in PE(A, , R). 

LEMMA 2. If  B is the pseudodtrerential operator associated with an operator 
A in PE(rZ, , R), then there exists u C > 0 for which 

II Bu II > C II u II 

for u in M(B, , R) n N(B)‘. 

Proof. Suppose there exists no such constant. Then one can find a 
sequence {u,} C M(B, , R) n N(B)l such that 11 II, 11 = 1 and /I Bu, II+ 0. 
The inequality (1) implies that {Us} is bounded in Hi , and so, by Lemma 1, 

there is a subsequence {u,~,] which is Cauchy in L, . Since B is a closed 
operator, limj+, 2Lnj = u0 must be in N(B). Since U, is the limit of functions in 

AT( having norm I, this is a contradiction. 
Now if A and d are two operators in PE(A, , R), it follows from the 

boundedness of the coefficients of these operators that there exists an E > 0 
for which 

&4 - A) u /I 2: E 11 II II1 (2) 

for all u in Hi . In particular, E may be taken small if the coefficients of -4 are 
near those of -4 uniformly in KY. 

THEOREhI 2. If  A is an operator in PE(A, , R), then there exists an E,, :> 0 
such that 

dimension FL :< dimension FA 

Proof. Given A and A in PE(A, , R), let B and & be the associated 
pseudodifferential operators. Then by Lemma 2 and the inequalities (I) and 
(2) there exist constants C and E such that 



PARTIALLY ELLIPTIC OPERATORS 379 

for all u E M(B, , R) n N(B)l. If E < cA < l/C, then there exists a different 
constant C, independent of E, for which 

for all 24 E M(B, , Ii) n N(B)‘. 
Suppose A is an operator in PE(A, , A) with E < <A as above, and suppose 

that dimFz > dim FA . Then there exists a nonzero u,, in Fx n F,‘. It 
follows that u0 E M(B, , R) n N(B)I, and so I/ u,, II1 < C (/ Bu,, /I = 0, which 
is a contradiction. 

REFERENCES 

1. A. V. LAIR, A Rellich compactness theorem for sets of finite volume, Amer. M&z. 
Monthly 83 (1976), 350-351. 

2. J. A. LAVITA, J. R. SCHULFXBERGER, AND C. H. WILCOX, Scattering theory of wave 
propagation problems of classical physics, J. Applicable Anal. 3 (1973), 57-77. 

3. J. A. LAVITA AND B. WENDROFF, Coerciveness inequalities for some nonelliptic 
differential and pseudodifferential operators, /. Differential Eqrrations (to appear). 

4. L. NIRENFSERG AND H. F. WALKER, The null-spaces of elliptic partial differential 
operators in [w”, J. Math. Anal. Appl. 42 (1973), 271-301. 

5. J. R. SCHULENBERCER AND C. H WILCOX, Coerciveness inequalities for nonelliptic 
systems of partial differential equations, Ann Muth. Puru Appl. 88 (197 I), 229-306. 

6. I-I. F. WALKER, On the null-spaces of first-order elliptic partial differential operators 
in [w”, Proc. Amer. Math. Sot. 30 (1971), 278-286. 

7. H. F. WXKER, On the null-spaces of elliptic partial differential operators in Iw”, 
Trans. Amer. Muth. Sot. 173 (1972), 263-273. 

409/55/a-9 


